Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,33^{44}=11^{44}\cdot3^{44}=11^{44}\cdot81^{11}>11^{33}\cdot64^{11}=11^{33}\cdot4^{33}=44^{33}>44^{32}\)
\(b,A=2000^{2016}\left(2000-1\right)+1999=1999\cdot2000^{2016}+1999⋮1999\)
A=1-1/(2013*2014)
B=1-1/(2014*2015)
2013*2014<2014*2015
=>1/2013*2014>1/2014*2015
=>-1/2013*2014<-1/2014*2015
=>A<B
A=2011^2012-2011^2011= 2011^2011 * 2011 -2011^2011= 2011^2011 *(2011-1)= 2011^2011 *2010
B=2011^2013-2011^2012=2011^2012*2011- 2011^2012= 2011^2012 *(2011-1) = 2011^2012 *2010
vì 2011^2011*2010 < 2011^2012*2010 nên A<B
Ta có : 2011^2013 x M = (2010^2012 x 2011 + 2011^2013)^2013 > (2010^2013 + 2011^2013)^2013 = N x (2010^2013 + 2011^2013)
Do đó: 2011^2013 x M > N x (2010^2013 + 2011^2013)
<=> M > N x [(2010/2011)^2013 + 1] ==> M > N (điều phải chứng minh)
\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)
\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)
=>B<1
=>A>B
Ta có :
430 = 415 . 230 > 230 . 411 > 230 . 311 = 3 . 2410
nên 430 > 3 . 2410
Vì vậy, 230 + 330 + 430 > 3 . 2410
Vậy A > B
Ta có : A = 20002016 + 20002017
= 20002016.(1 + 2000)
= 20002016.2001
< 20012016.2001
= 20012017 = B
=> A < B
Vậy A < B
B=20002017+2017 ,A=20002016+20002017
Mà 20002016>2017
=>A>B