Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy 19991999 + 1 / 19992000 + 1 < 1 và 1998 > 0
nên ta có: A < 19991999 + 1 + 1998 / 19992000 + 1 + 1998
< 19991999 + 1999 / 19992000 + 1999
< 1999(19991998 + 1) / 1999(19991999 + 1)
< 19991998 + 1 / 19991999 + 1
< B
Vậy A < B
ta có: \(A=\frac{1999^{1999}+1}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)-1998}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)}{1999^{1998}+1}-\frac{1998}{1999^{1998}+1}\)
\(=1999-\frac{1998}{1999^{1998}+1}\)
\(B=\frac{1999^{2000}+1}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)-1998}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)}{1999^{1999}+1}-\frac{1998}{1999^{1999}+1}\)
\(=1999-\frac{1998}{1999^{1999}+1}\)
mà \(\frac{1998}{1999^{1998}+1}>\frac{1998}{1999^{1999}+1}\Rightarrow1999-\frac{1998}{1999^{1998}+1}< 1999-\frac{1998}{1999^{1999}+1}\)
\(\Rightarrow A< B\)
\(B=\frac{1999+2000}{2000+2001}\)
\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
Vì \(\frac{1999}{2000+2001}< \frac{1999}{2000}\) ; \(\frac{2000}{2000+2001}< \frac{2000}{2001}\)
\(\Rightarrow\)\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)< \(A=\frac{1999}{2000}+\frac{2000}{2001}\)
\(\Rightarrow\)B < A
Vậy B < A
B = \(\frac{2001}{2002}+\frac{2002}{2003}\)
có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B
a: \(33^{44}>44^{33}>44^{32}\)
\(a,33^{44}=11^{44}\cdot3^{44}=11^{44}\cdot81^{11}>11^{33}\cdot64^{11}=11^{33}\cdot4^{33}=44^{33}>44^{32}\)
\(b,A=2000^{2016}\left(2000-1\right)+1999=1999\cdot2000^{2016}+1999⋮1999\)