Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(=7.\frac{1}{10.11}+7.\frac{1}{11.12}+7.\frac{1}{12.13}+...+7.\frac{1}{69.70}\)
\(=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
\(A=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=\frac{6}{70}\)
\(=\frac{3}{35}\)
Sửa đề : \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Leftrightarrow\)\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{2}{9}.\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{18}\)
\(\Leftrightarrow\)\(x+1=18\)
\(\Leftrightarrow\)\(x=18-1\)
\(\Leftrightarrow\)\(x=17\)
Vậy \(x=17\)
Chúc bạn học tốt ~
\(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(\Leftrightarrow\)\(x+10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)=\frac{3}{11}\)
\(\Leftrightarrow\)\(x+10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow\)\(x+10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow\)\(x+10.\frac{4}{55}=\frac{3}{11}\)
\(\Leftrightarrow\)\(x+\frac{40}{55}=\frac{3}{11}\)
\(\Leftrightarrow\)\(x=\frac{3}{11}-\frac{40}{55}\)
\(\Leftrightarrow\)\(x=\frac{-5}{11}\)
Vậy \(x=\frac{-5}{11}\)
Chúc bạn học tốt ~
\(M=\dfrac{6}{2.5}+\dfrac{6}{5.8}+\dfrac{6}{8.11}+...+\dfrac{6}{47.50}\)
\(\Rightarrow\dfrac{M}{2}=\dfrac{6:2}{2.5}+...+\dfrac{6:2}{47.50}\)
\(=\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{47.50}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{47}-\dfrac{1}{50}\)
\(=\dfrac{1}{2}-\dfrac{1}{50}\)
\(=\dfrac{12}{25}\)
\(\Rightarrow M=\dfrac{12}{25}.2=\dfrac{24}{25}\)
\(K=\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{43.45}\)
\(\Rightarrow2K=\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{43.45}\)
\(=\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{43}-\dfrac{1}{45}\)
\(=\dfrac{1}{9}-\dfrac{1}{45}\)
\(=\dfrac{4}{45}\)
\(\Rightarrow K=\dfrac{4}{45}:2=\dfrac{2}{45}\)
\(M=\dfrac{6}{2.5}+\dfrac{6}{5.8}+\dfrac{6}{8.11}+...+\dfrac{6}{47.50}\)
\(M=\dfrac{6}{3}.\left(\dfrac{6}{2}-\dfrac{6}{5}+\dfrac{6}{5}-\dfrac{6}{8}+\dfrac{6}{8}-\dfrac{6}{11}+...+\dfrac{6}{47}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\left(\dfrac{6}{2}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\left(\dfrac{150}{50}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\dfrac{144}{50}\)
\(M=\dfrac{144}{25}\)
\(K=\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{43.45}\)
\(K=\dfrac{1}{2}.\left(\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{43}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\left(\dfrac{1}{9}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\left(\dfrac{5}{45}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\dfrac{4}{45}\)
\(K=\dfrac{2}{45}\)
B=3^10.11+3^10.5/3^9.2^4
= 3^10( 11+5)/3^9.16
= 3^10.16/3^9.16
= 3^10/3^9
= 3
Vậy B = 3 (1)
C = 2^10.13+2^10.65/2^8.104
= 2^10(13+65)/2^8.2^2.26
= 2^10.78/2^10.26
= 78/26
= 3
Vậy C = 3 (2)
Từ (1) v (2) suy ra B=C
\(b)\) Ta có: \(x-\frac{37}{45}=\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45\text{ }}\)
\(\Leftrightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)
\(\Leftrightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{45}\)
\(\Leftrightarrow x-\frac{37}{45}=1\)
\(\Leftrightarrow x=1+\frac{37}{45}\)
\(\Leftrightarrow x=\frac{82}{45}\)
Vậy \(x=\frac{82}{45}\)
=> 1/11 - 1/13 + 1/13 - 1/15 + ..... + 1/19 - 1/21 - x + 4 + 221/231 = 7/3
=> 1/11 - 1/21 - x + 4 + 221/231 = 7/3
=> 2099/420 - x = 7/3
=> x = 2099/420 - 7/3 = 373/140
Tk mk nha
Bài làm
\(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow2\left(\frac{1}{11.13}+\frac{1}{13.15}+...+\frac{1}{19.21}\right)-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow2\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\right)-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow2\left(\frac{1}{11}-\frac{1}{21}\right)-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow2.\frac{10}{231}-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow\frac{20}{231}-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow\frac{20}{231}-x+\frac{924}{231}+\frac{221}{231}=\frac{539}{231}\)
\(\Leftrightarrow\frac{20}{231}-x+\frac{924}{231}=\frac{539}{231}-\frac{221}{231}\)
\(\Leftrightarrow\frac{20}{231}-x+\frac{924}{231}=\frac{318}{231}\)
\(\Leftrightarrow\frac{20}{231}-x=\frac{318}{231}-\frac{924}{231}\)
\(\Leftrightarrow\frac{20}{231}-x=-\frac{606}{231}\)
\(\Leftrightarrow x=\frac{20}{231}-\frac{606}{231}\)
\(\Leftrightarrow x=-\frac{586}{231}\)
Vậy \(\Leftrightarrow=-\frac{586}{231}\)