Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
Ta có: a + 2 ≤ b + 2 ⇒ a + 2 + ( - 2 ) ≤ b + 2 + ( - 2 ) ⇔ a ≤ b
Vậy a ≤ b
a: a<b
=>a+1<b+1
mà a<a+1
nên a<b+1
b: a<b
=>a-2<b-2
mà b-2<b+1
nên a-2<b+1
A=\(2016^2=2016.2016\)
B=\(2015.2017=(2015+1)(2017-1)=2016.2016\)
=> A=B = 2016.2016
\(B=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1< 2016^2=A\)
\(A=2003.2005=\left(2004-1\right)\left(2004+1\right)=2004^2-1< 2004^2=B\)
Vậy \(A< B\).Chúc bạn học tốt.
\(A=2003\cdot2005\)
\(A=\left(2004-1\right)\left(2004+1\right)\)
\(A=2004^2-1< 2004^2=B\)
Vậy \(A< B\)
1)/x-3/=9-2x
/x-3/=\(\hept{\begin{cases}x-3khix>3\\3-xkhix< 3\end{cases}}\)
TH1:x>3 phương trình là
x-3=9-2x
<=> x+2x=9+3
<=> 3x =12
<=> x =4 (thỏa mãn)
TH2:x<3 phương trình là
3-x=9-2x
<=>-x+2x=9-3
<=>x =6(không thỏa mãn-loại)
Vậy tập nghiệm của phương trình là S={4}
Đặt \(m=1-x=1-\frac{a+1}{a^2+a+1}=\frac{a^2+a+1-a-1}{a^2+a+1}=\frac{a^2}{a^2+a+1}\)
\(n=1-y=1-\frac{b+1}{b^2+b+1}=\frac{b^2+b+1-b-1}{b^2+b+1}=\frac{b^2}{b^2+b+1}\)
=>\(m:n=\frac{a^2}{a^2+a+1}:\frac{b^2}{b^2+b+1}\)
=>\(m:n=\frac{a^2}{a^2+a+1}.\frac{b^2+b+1}{b^2}\)
=>\(m:n=\frac{a^2.\left(b^2+b+1\right)}{\left(a^2+a+1\right).b^2}\)
=>\(m:n=\frac{a^2.b^2+a^2.b+a^2}{a^2.b^2+a.b^2+b^2}\)
=>\(m:n=\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}\)
Vì \(a>b=>ab.a>ab.b;a^2>b^2\)
=>\(a^2.b^2+ab.a+a^2>a^2.b^2+ab.b+b^2\)
=>\(\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}>1\)
=>m:n>1
=>m:n
=>1-x>y-y
=>x<y
Vậy x<y
Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1< 2^{32}\)
\(\Leftrightarrow A< B\)
Ta có: a + 2 ≤ b + 2 ⇒ a + 2 + ( - 2 ) ≤ b + 2 + ( - 2 ) ⇔ a ≤ b
Vậy a ≤ b