Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 80.(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A = (38 - 1)(38 + 1)(316 + 1)(332 + 1)
A = (316 - 1)(316 + 1)(332 + 1)
A = (332 - 1)(332 + 1)
A = 364 - 1 < 364 = B
=> A < B
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\)
\(=\frac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\)
\(=\frac{1}{2}\left(3^8-1\right)\)
Vậy A < B
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\)
\(2A=\left(3^8-1\right)\)
\(A=\frac{3^8-1}{2}< B\)
Mình ghi nhầm đề bài 1 tí đề bài là :
So sánh 2 số A và B biết :
A = (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
A=4(32+1)(34+1)(38+1)...(364+1)
=>2A=8(32+1)(34+1)(38+1)....(364+1)
=(32-1)(32+1)(34+1)(38+1).....(364+1)
=(34-1)(34+1)(38+1)....(364+1)
=(38-1)(38+1).....(364+1)
tương tự như thế ta được
2A=3128-1
=>A\(\frac{3^{128}-1}{2}\)
=>B>A
mình bí