Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
2014 + 2015 + 2022 = 6051
2016 + 2017 + 2018 = 6051
=>\(\sqrt{2014}+\sqrt{2015}+\sqrt{2022}=\\ \sqrt{2016}+\sqrt{2017}+\sqrt{2018}\)
=> A = B
Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6
Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{2015-2014}{\sqrt{2015}+\sqrt{2014}}>\dfrac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\sqrt{2016}-\sqrt{2015}\)
Ta có: √2015−√2014=2015−2014√2015+√2014>2016−2015√2016+√2015=√2016−√2015
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
\(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)
căn 2016+căn 2015>căn 2015+căn 2014
=>1/(căn 2016+căn 2015)<1/(căn 2015+căn 2014)
=>căn 2016-căn 2015<căn 2015-căn 2014
Ta đặt \(x=2015\), khi đó \(2014=x-1,2016=x+1.\) Ta có như sau
\(2014^2\cdot2016=\left(x-1\right)^2\left(x+1\right)=\left(x^2-1\right)\left(x-1\right)\)\(
A = \(\frac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\frac{1}{\sqrt{2016}+\sqrt{2015}}\); B = \(\frac{2015-2014}{\sqrt{2015}+\sqrt{2014}}=\frac{1}{\sqrt{2015}+\sqrt{2014}}\)
Mà \(\sqrt{2016}+\sqrt{2015}>\sqrt{2015}+\sqrt{2014}\) ( Vì \(\sqrt{2016}>\sqrt{2014}\))
Nên \(\frac{1}{\sqrt{2016}+\sqrt{2015}}
\(B=2\sqrt{2016}=\sqrt{2016}+\sqrt{2016}>\sqrt{2014}+\sqrt{2016}=A\)
Vậy A < B
ta có \(B=2\sqrt{2016}=\sqrt{2016}+\sqrt{2016}>\sqrt{2014}+\sqrt{2016}=A\)
Vậy A<B