Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2\sqrt{2}+6=\sqrt{8}+6< \sqrt{9}+6=3+6=9\)
Vậy \(2\sqrt{2}+6< 9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+2\sqrt{6}+3=2+\sqrt{24}+3>5+4=9=3^2\)
Vậy \(\sqrt{3}+\sqrt{2}>3\)
* \(1+\sqrt{3}< 2+\sqrt{2}\)
* \(\sqrt{5}+\sqrt{3}>3\)
(Đúng thì k cho mình nhá!)
Bạn ghi thiếu đề hoặc đề sai không vậy??
Biểu thức không bằng một giá trị nào đó thì sao tìm x được :>
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\left(5-\sqrt{3}\right)}}=\sqrt{5\sqrt{3}+\sqrt{25-5\sqrt{3}}}\)
Trần Đức Thắng lm nốt đi
Ta có:
\(\left(\sqrt{3+\sqrt{20}}\right)^2-\left(\sqrt{5+\sqrt{5}}\right)^2\)
\(=3+\sqrt{20}-5-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
Ta thấy: \(5>4\Rightarrow\sqrt{5}>\sqrt{4}\Rightarrow\sqrt{5}>2\)
Do đó : hiệu trên >0
Suy ra : \(\sqrt{3+\sqrt{20}}>\sqrt{5+\sqrt{5}}\)
Ta sẽ chứng minh bằng biến đổi tương đương như sau :
Ta có : \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\left(1\right)\Leftrightarrow\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b< a+b+2\sqrt{ab}\)
\(\Leftrightarrow2\sqrt{ab}>0\Leftrightarrow\sqrt{ab}>0\) (luôn đúng)
Vì bất đẳng thức cuối luôn đúng nên bất đẳng thức (1) được chứng minh.
\(\sqrt{37}-\sqrt{5}>\sqrt{36}-\sqrt{5}>\sqrt{36}-\sqrt{9}=3\)
\(\Rightarrow\sqrt{37}-\sqrt{5}>3\)