Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 3^400=(3^4)^100=81^100 (1)
2^300=(2^3)^100=8^100 (2)
tữ (1),(2)=> 81^100> 8^100 => 3^400> 2^300
200300 = 2003.100 = (2003)100 = 8000000100
300200 = 3002.100 = (3002)100 = 90000100
Vì 8000000100 > 90000100
=> 200300 > 300200
200300=(2003)100=8000000100
300200=(3002)100=90000100
Vì 8000000>90000=>8000000100>90000100
=>200300>300200
\(2^{91}=\left(2^{13}\right)^7=73728^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\) nhỏ hơn \(73728^7\)
\(\Rightarrow2^{91}\) lớn hơn \(5^{35}\)
\(b,3^{400}=\left(3^4\right)^{100}=81^{100}\\ 4^{300}=\left(4^3\right)^{100}=64^{100}\\ Vì:81^{100}>64^{100}\left(Do:81>64\right)\\ \Rightarrow3^{400}>4^{300}\)
a/
\(\left(-\frac{1}{16}\right)^{1000}=\left(-\frac{1}{2^4}\right)^{1000}=\left(-\frac{1}{2}\right)^{4000}.\)
Do \(\left(\frac{1}{2}\right)^{4000}>\left(\frac{1}{2}\right)^{5000}\Rightarrow\left(-\frac{1}{2}\right)^{4000}< \left(-\frac{1}{2}\right)^{5000}\Rightarrow\left(-\frac{1}{16}\right)^{1000}< \left(-\frac{1}{2}\right)^{5000}\)
b/
\(3^{400}=\left(3^4\right)^{100}=81^{100}\)
\(4^{300}=\left(4^3\right)^{100}=64^{100}\)
\(\Rightarrow81^{100}>64^{100}\Rightarrow3^{400}>4^{300}\)
Ta có:\(300^{400}=\left(3.100\right)^{400}=\left(3^4\right)^{100}.100^{400}=81^{100}.100^{400}\)
\(400^{300}=\left(4.100\right)^{300}=\left(4^3\right)^{100}.100^{300}=64^{100}.100^{300}\)
Vì 64<81;300<400 nên 64100.100300<84100.100400
Vậy 400300<300400
Ta có:\(300^{400}=\left(3^4\right)^{100}=81^{100}\)
\(400^{300}=\left(4^3\right)^{100}=64^{100}\)
Vì 64<81 nên 64100<81100
Vậy 400300<300400