Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 3 số TN liên tiếp \(\left(n-1\right);n;\left(n+1\right)\) ta có
\(\left(n-1\right).n.\left(n+1\right)=n.\left(n^2-1\right)=n^3-n< n^3\)
\(\Rightarrow A\le\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{20.21.22}=\)
\(=\dfrac{1}{2}\left(\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{22-20}{20.21.22}\right)=\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{20.21}-\dfrac{1}{21.22}\right)=\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{21.22}\right)=\dfrac{1}{2^2}-\dfrac{1}{2.21.22}< \dfrac{1}{2^2}\)
Nhầm
\(A=\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{99}}\)
\(\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{100}}\)
\(A-\frac{1}{3}A=\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+\left(\frac{1}{3^3}-\frac{1}{3^3}\right)+......+\left(\frac{1}{3}-\frac{1}{3^{100}}\right)\)
\(\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{100}}
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)
\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)
\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)
\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)
\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)
mà \(3< \dfrac{10}{3}\)
nên \(M< \dfrac{10}{3}\)
\(1+2+...+n=\dfrac{\left(\dfrac{n-1}{1}+1\right).\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)}{2}\)
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=3\left(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+2022}\right)\)
\(=3\left(\dfrac{1}{\dfrac{2.\left(2+1\right)}{2}}+\dfrac{1}{\dfrac{3.\left(3+1\right)}{2}}+...+\dfrac{1}{\dfrac{2022.\left(2022+1\right)}{2}}\right)\)
\(=3\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2022.2023}\right)\)
\(=3.2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)
\(=6.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6.\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)\)
\(=6.\dfrac{2021}{4046}=3.\dfrac{2021}{2023}=\dfrac{6063}{2023}=\dfrac{18189}{6069}\)
\(\dfrac{10}{3}=\dfrac{20230}{6069}>\dfrac{18189}{6069}=M\)
\(3^{2^3}=3^8=9^4>8^4=2^{12}>2^{10}\)
Từ đó:\(2^{3^{2^3}}>2^{2^{10}}=2^{2.2^9}=4^{2^9}>3^{2^9}=3^{2^{3^2}}\)
Vậy \(2^{3^{2^3}}>3^{2^{3^2}}\)
nhớ **** mình nha bạn