Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1-\frac{175}{176}=\frac{1}{176}\)
\(1-\frac{2008}{2009}=\frac{1}{2009}\)
Vì \(\frac{1}{2009}< \frac{1}{176}\)
Do đó\(\frac{2008}{2009}< \frac{175}{176}\)
a) \(\dfrac{35}{101}=\dfrac{105}{303}< \dfrac{189}{303}\Rightarrow\dfrac{35}{101}< \dfrac{189}{303}\)
b) \(\dfrac{11}{13}< \dfrac{11+2}{13+2}=\dfrac{13}{15}< \dfrac{14}{15}\Rightarrow\dfrac{11}{-13}>\dfrac{-14}{15}\)
c) \(-\dfrac{32}{19}< 0< \dfrac{23}{32}\Rightarrow-\dfrac{32}{19}< \dfrac{23}{32}\)
d) \(1,561< 1,5661\Rightarrow-1,561>-1,5661\)
e) \(0,1=\dfrac{1}{10}=\dfrac{40}{400}< \dfrac{40+56}{400+56}=\dfrac{96}{456}< \dfrac{176}{456}\Rightarrow0,1< \dfrac{176}{456}\)
g) \(0,3=\dfrac{3}{10}=\dfrac{9}{30}< \dfrac{9+8}{30+8}=\dfrac{17}{38}< \dfrac{19}{38}\Rightarrow0,3< \dfrac{19}{38}\Rightarrow-0,3>\dfrac{-19}{38}\)
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
Bài 1:
ta có: 333<3333; 444<4444
=> 333444<33334444
Bài 2:
\(A=\frac{21^5}{81}=\frac{\left(3.7\right)^5}{3^4}=\frac{3^5.7^5}{3^4}=3.7^5=50421\)
\(B=\frac{3^3.\left(0,5\right)^5}{\left(1,5\right)^5}=\frac{3^3.\left(0,5\right)^5}{\left(3.0,5\right)^5}=\frac{3^3.\left(0,5\right)^5}{3^5.\left(0,5\right)^5}=\frac{1}{3^2}=\frac{1}{9}\)
\(C=2^2.\frac{1}{128}.45.2^{-6}=\frac{2^2.45}{128.64}=\frac{2^2.45}{2^7.2^6}=\frac{45}{2^{11}}=\frac{45}{2048}\)
\(D=\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+2^2.3^3+3^3}{-13}=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}\)\(=3^3.\left(-1\right)=-27\)
\(12^8.9^{12}=\left(3\right)^8.\left(2^2\right)^8.\left(3^2\right)^{12}=2^{16}.3^{32}\)
\(17^6< 18^6=2^6.\left(3^2\right)^6=2^6.3^{12}< 2^{16}.3^{32}=12^8.9^{12}\)