Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(-45< -16\) nên \(\left(-\dfrac{45}{17}\right)^{15}< \left(\dfrac{-16}{17}\right)^{15}\)
b) Vì \(21< 23\) nên \(\left(-\dfrac{8}{9}\right)^{21}< \left(-\dfrac{8}{9}\right)^{23}\)
c) \(27^{40}=3^{3^{40}}=3^{120}\)
\(64^{60}=8^{2^{60}}=8^{120}\)
Vì \(3< 8\) nên \(3^{120}< 8^{120}\) hay \(27^{40}< 64^{60}\)
con ai kooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
\(6^8và16^{12}=\left(6.8\right)^0và\left(16.3\right)^9=48< 48^9\)
6⁸ = (6²)⁴ = 36⁴
16¹² = (16³)⁴ = 4096⁴
Do 36 < 4096 nên 36⁴ < 4096⁴
Vậy 6⁸ < 16¹²
1,1020và 9010
ta có:+,1020=(102)10=10010
+,9010=9010
vì 10010>9010=>1020>9010
2,(1/16)10 và (1/2)50
ta có:+, (1/16)10=(1/16)10
+,(1/2)50=(1/25)10=(1/32)10
vì (1/16)10>(1/32)10=>(1/16)10>(1/2)50
k mik nhé
\(a,\) \(10^{20}=10^{10+10}=10^{10}.10^{10}\)
\(90^{10}=9^{10}.10^{10}\)
Vì \(10^{10}.10^{10}>9^{10}.10^{10}\)
\(\Rightarrow10^{20}>90^{10}\)
Vậy \(10^{20}>90^{10}\)
\(b,\)\(\left(\frac{1}{16}\right)^{10}=\frac{1^{10}}{16^{10}}=\frac{1}{\left(4^2\right)^{10}}=\frac{1}{4^{20}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1^{50}}{2^{50}}=\frac{1}{\left(2^2\right)^{25}}=\frac{1}{4^{25}}\)
Vì \(\frac{1}{4^{20}}>\frac{1}{4^{25}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
~~~~~~~~~~Hok tốt~~~~~~~~~~~
Ta co :
2^150 =(2^3)^50 =8^50
3^100 = (3^2)^50 = 9^50
vi 8<9 hay 8^50 <9^50 vay 2^150 <3^100
a, \(4^{100}=\left(2^2\right)^{100}=2^{200}< 2^{202}\)
\(\Rightarrow\text{ }4^{100}< 2^{202}\)
b, \(3^0=1< 5^8\)
\(3^0< 5^8\)
c, \(\left(0,6\right)^0=1\)
\(\left(-0,9\right)^6=\left(0,9\right)^6\)
\(\Rightarrow\text{ }\left(0,6\right)^0< \left(-0,9\right)^6\)
d,
e, \(8^{12}=\left(2^3\right)^{12}=2^{36}=2^{16}\cdot2^{20}=2^{16}\cdot\left(2^4\right)^5=2^{16}\cdot16^5\)
\(12^8=\left(2^2\cdot3\right)^8=2^{16}\cdot3^8=2^{16}\cdot\left(3^2\right)^4=2^{16}\cdot9^4\)
Vì \(2^{16}\cdot16^5>2^{16}\cdot9^4\text{ }\Rightarrow\text{ }8^{12}>12^8\)
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
\(-\left(-\dfrac{1}{16}\right)^{100}=-\left(-\dfrac{1}{2^4}\right)^{100}=-\left(\dfrac{1}{2^4}\right)^{100}=-\left[\left(\dfrac{1}{2}\right)^4\right]^{100}=-\left(\dfrac{1}{2}\right)^{400}=-\dfrac{1}{2^{400}}\)
\(-\left(-\dfrac{1}{8}\right)^{150}=-\left(-\dfrac{1}{2^3}\right)^{150}=-\left(\dfrac{1}{2^3}\right)^{150}=-\left[\left(\dfrac{1}{2}\right)^3\right]^{150}=-\left(\dfrac{1}{2}\right)^{450}=-\dfrac{1}{2^{450}}\)
\(\dfrac{1}{2^{400}}>\dfrac{1}{2^{450}}\Rightarrow-\dfrac{1}{2^{400}}< -\dfrac{1}{2^{450}}\)
Vậy \(-\left(-\dfrac{1}{6}\right)^{100}< -\left(-\dfrac{1}{8}\right)^{150}\)