K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

ai tíc mình mìh se tích lai

25 tháng 1 2019

(2x-1)(y+2)=-10

=> (2x-1),(y+2)€ Ư(-10)

(2x-1),(y+2)€ {-1;1;2;-2;5;-5;10;-10}

mà (2x-1) là số lẻ

nên (2x-1)€ {-1;1;5;-5}

với 2x-1=-1 thì y+2=10

      2x= 0.         y=10-2

       x=0.            y=8

với 2x-1=1 thì y+2=-10

        2x=2.       y=-10-2

          x=1.       y=-12

với 2x-1=5 thì y+2=-2

      2x=6.         y=-2-2

        x=3.         y=-4

với 2x-1=-5 thì y+2=2

       2x=-4.    thì y=2-2

         x=-2.          y=0

28 tháng 4 2017

x=-1

y=1

z=0

19 tháng 3 2017

lớp 1 ak

19 tháng 3 2017

 lớp 1 thì đừng làm

11 tháng 4 2021

aaaakk

3 tháng 2 2017

a) x=22

b)x=-795

c)x=84

3 tháng 2 2018

a) x - 22

b) = - 795

c) =84

5 tháng 11 2021
Đây mà là toán lớp một ấy hả
\(M=\frac{x^2+x}{x-1}\)a, Tìm x nguyên để M nguyênb, Tìm GTNN của M a, ĐKXĐ: \(x\ne1\)Ta có \(M=\frac{x^2+x}{x-1}=\frac{x^2-x}{x-1}+\frac{2x}{x-1}=x+\frac{2x}{x-1}\)Để M nguyên thì \(\frac{2x}{x-1}\in Z\)                  \(\Leftrightarrow2x⋮x-1\)                  \(\Leftrightarrow2\left(x-1\right)+2⋮x-1\)                  \(\Leftrightarrow2⋮x-1\)Mà x nguyên nên x - 1 nguyênKhi đó x - 1 thuộc ước của 2 Ta có bảng x - 1        -2                    -1     ...
Đọc tiếp

\(M=\frac{x^2+x}{x-1}\)

a, Tìm x nguyên để M nguyên

b, Tìm GTNN của M

 

a, ĐKXĐ: \(x\ne1\)

Ta có \(M=\frac{x^2+x}{x-1}=\frac{x^2-x}{x-1}+\frac{2x}{x-1}=x+\frac{2x}{x-1}\)

Để M nguyên thì \(\frac{2x}{x-1}\in Z\)

                  \(\Leftrightarrow2x⋮x-1\)

                  \(\Leftrightarrow2\left(x-1\right)+2⋮x-1\)

                  \(\Leftrightarrow2⋮x-1\)

Mà x nguyên nên x - 1 nguyên

Khi đó x - 1 thuộc ước của 2 

Ta có bảng 

x - 1        -2                    -1                       1                        2                      
x-1023
Kết luậnthỏa mãnthỏa mãnthỏa mãnthỏa mãn

 

b, T nghi ngại về cái câu tìm min này vì số nó rất xấu -,-'' nên ko thể làm cách lớp 7,8 được

\(M=\frac{x^2+x}{x-1}\)\(\Rightarrow Mx-M=x^2+x\)

                              \(\Leftrightarrow x^2+x\left(1-M\right)+M=0\)

Có nghiệm khi \(\Delta=\left(1-M\right)^2-4M\ge0\)

                \(\Leftrightarrow1-2M+M^2-4M\ge0\)

                 \(\Leftrightarrow\orbr{\begin{cases}M\ge3+2\sqrt{2}\\M\le3-2\sqrt{2}\end{cases}}\)

 

4
30 tháng 4 2019

Đây là hỏi hay giải vậy a :V ( Một bài dạy Free cho diễn đàn ae vô xem đi :D )

30 tháng 4 2019

trông như toán lớp 1 ấy nhỉ ? -,-''