Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo mk là 102
đúng ko bết
cậu nhớ tk cho mk nha
ai tk cho mk thì mk tk lại cho
72015=72012.73=(74)503.343=2401503.343=..........01.343=............43
Dùng mod 1000
Sẽ tách 1000=8.125
Vì \(306^{2009^{300}}⋮8\) và (306, 125)=1
+) Ta có: \(306^{2009^{300}}\equiv0\left(mod8\right)\)(1)
+) Tìm ? : \(306^{2009^{300}}\equiv?\left(mod125\right)\)
+) \(2009^{300}\equiv9^{300}\equiv9^{10.30}\equiv1\left(mod100\right)\)
Đặt: \(2009^{300}=100t+1\)
Ta có: \(306^{2009^{300}}=306^{100t+1}=306^{100t}.306\equiv306\equiv56\left(mod125\right)\)(2)
Từ (1) và 56 chia hết cho 8 => \(306^{2009^{300}}-56\equiv0\left(mod8\right)\Rightarrow306^{2009^{300}}\equiv56\left(mod8\right)\)(3)
Từ (1), (2) và (125, 8) =1
=> \(306^{2009^{300}}\equiv56\left(mod1000\right)\)
Vậy 3 chữ số tận cùng là 056
Khồng phải từ (1) và (2) mà là từ (2) và (3)
(2) <=> \(306^{2009^{300}}-56\)chia hết cho 8
(3) <=> \(306^{2009^{300}}-56\)chia hết cho 125
Từ (2), (3) và (8, 125) => \(306^{2009^{300}}-56\)chia hết cho 1000
=>\(\text{}\text{}306^{2009^{300}}\)chia 1000 dư 56 nghĩa là \(\text{}\text{}306^{2009^{300}}\)có dạng có 3 chữ số tận cùng là 056
300^300 = 3^300 x 100^300
Ta có log 3^300 = 300 x log3 = a
Làm tròn số a trên => 300^300 có a x 100^300 chữ số
300^300 = 3^300 x 100^300
ta có log 3^300 = 300 x log3 = a
làm tròn số a trên => 300^300 có a x 100^300 chữ số
3
hay không?
tìm xem có bao nhiêu số chia hết 5,,riêng 25 tính 2 lần và 125 tính 3 lần