\(306^{2009^{300}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

Dùng mod 1000

Sẽ tách 1000=8.125

Vì \(306^{2009^{300}}⋮8\) và (306, 125)=1

+) Ta có: \(306^{2009^{300}}\equiv0\left(mod8\right)\)(1)

+) Tìm ? : \(306^{2009^{300}}\equiv?\left(mod125\right)\)

+) \(2009^{300}\equiv9^{300}\equiv9^{10.30}\equiv1\left(mod100\right)\)

Đặt: \(2009^{300}=100t+1\)

Ta có: \(306^{2009^{300}}=306^{100t+1}=306^{100t}.306\equiv306\equiv56\left(mod125\right)\)(2)

Từ (1)  và 56 chia hết cho 8 => \(306^{2009^{300}}-56\equiv0\left(mod8\right)\Rightarrow306^{2009^{300}}\equiv56\left(mod8\right)\)(3)

Từ (1), (2) và (125, 8) =1 

=> \(306^{2009^{300}}\equiv56\left(mod1000\right)\)

Vậy 3 chữ số tận cùng là 056

     

20 tháng 6 2019

Khồng phải từ (1) và (2) mà là từ (2) và (3)

(2) <=> \(306^{2009^{300}}-56\)chia hết cho 8

(3) <=> \(306^{2009^{300}}-56\)chia hết cho 125

Từ (2), (3) và (8, 125) => \(306^{2009^{300}}-56\)chia hết cho 1000

=>\(\text{​​}\text{​​}306^{2009^{300}}\)chia 1000 dư 56 nghĩa là \(\text{​​}\text{​​}306^{2009^{300}}\)có dạng có 3 chữ số tận cùng là 056

23 tháng 8 2019

Câu hỏi của Phạm Ngọc Thạch - Toán lớp 6 - Học toán với OnlineMath

https://olm.vn/hoi-dap/detail/7627042571.html

Tham khảo link trên

Hk tốt !!

23 tháng 8 2019

Sử dụng đồng dư thức nha

\(3^{10}\equiv49\left(mod1000\right)\)

\(3^{100}\equiv\left(49^5\right)^2\equiv249^2\equiv1\left(mod1000\right)\)

=> 3 chữ số tận cùng là 001

Study well 

bạn kham khảo link này :  https://olm.vn/hoi-dap/detail/47600715292.html

21 tháng 6 2019

Tách: 1000=8.125

Ta có: \(6^{728^{32}}\equiv0\left(mod8\right)\)

Ta có: \(6^{25}=6^{5.5}\equiv26^5\equiv1\left(mod125\right)\)

\(728\equiv3\left(mod25\right)\)

=> \(728^{32}\equiv3^{32}\equiv11^4\equiv16\left(mod25\right)\)

=> Đặt: \(728^{32}=25t+16\)

tự làm tiếp nhé!

21 tháng 6 2019

Em làm tiếp thử ạ!

\(6^{25t}.6^{16}\equiv1.81\equiv81\left(mod125\right)\)

Từ đây ta có: \(6^{728^{32}}-81\equiv0\left(mod125\right)\Leftrightarrow6^{728^{32}}-81-375\equiv0\left(mod81\right)\)

\(\Leftrightarrow6^{728^{32}}-456\equiv0\) (mod125)

Lại có \(6^{728^{32}}-456\equiv0\left(mod8\right)\) 

Suy ra \(6^{728^{32}}\equiv456\left(mod1000\right)\) (vì (125;8) = 1)

20 tháng 10 2019

Là 376

Học tốt 

#

2^100=(2^10)^10

         =(1024)^10=(1024^2)^5=(376)^10=(......376)

18 tháng 6 2019

a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)

Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)

Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)

\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)

Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100)  mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)

18 tháng 6 2019

b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)