Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Đổi `tan 12^o = cot 78^o ; tan 28^o = cot 62^o ; tan 58^o = cot 32^o`
Vì `32^o<61^o<62^o<78^o<79^15'`
`->cot 32^o>cot 61^o>cot 62^o > cot 78^o > cot 79^o15'`
`->tan 58^o>cot 61^o > tan 28^o > tan 12^o > cot 79^o15'`
b,
Đổi `sin 56^o = cos 34^o ; sin 74^o=cos 16^o`
Vì `16^o<24^o<63^o41'<67^o<85 ^o`
`->cos 16^o>cos 34^o>cos 63^o41'>cos 67^o>cos 85 ^o`
`->sin 74^o>sin 56^o>cos 63^o41'>cos 67^o>cos 85 ^o`
\(C=\frac{tan^210}{tan^2\left(90-80\right)}+\frac{tan^220}{tan^2\left(90-70\right)}+...+\frac{tan^240}{tan^2\left(90-50\right)}+tan^245\)
\(=\frac{tan^210}{tan^210}+\frac{tan^220}{tan^220}+\frac{tan^230}{tan^230}+\frac{tan^240}{tan^240}+1\)
\(=1+1+1+1+1=5\)
Bài 1:
a) tan83° - cotg7° = cotg7° - cotg7° = 0
b) cos\(^2\)20° + cos\(^2\)40° + cos\(^2\)50° + cos\(^2\)70°
= sin\(^2\)70° + cos\(^2\)40° + sin\(^2\)40° + cos\(^2\)70°
= (sin\(^2\)70° + cos\(^2\)70°) + (sin\(^2\)40° + cos\(^2\)40°)
= 1 + 1
= 2
Đặt \(\sin\alpha=x,\cos\alpha=y\)
Ta có hpt:
\(\left\{{}\begin{matrix}x+y=\frac{7}{5}\\x^2+y^2=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y=\frac{7}{5}\\xy=\frac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\frac{\left(\frac{7}{5}\right)^2-1}{2}=\frac{12}{25}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{7}{5}-y\\xy=\frac{12}{25}\end{matrix}\right.\)
\(\Rightarrow xy=y\left(\frac{7}{5}-y\right)=\frac{12}{25}\)
\(\Leftrightarrow\frac{7}{5}y-y^2=\frac{12}{25}\Leftrightarrow y^2-\frac{7}{5}y+\frac{12}{25}=0\)
\(\Delta=\frac{49}{25}-4\cdot\frac{12}{25}=\frac{1}{25}>0;\sqrt{\Delta}=\frac{1}{5}\)
phương trình có 2 nghiệm phân biệt:
\(\left\{{}\begin{matrix}y=\frac{\frac{7}{5}+\frac{1}{5}}{2}=\frac{4}{5}\\y=\frac{\frac{7}{5}-\frac{1}{5}}{2}=\frac{3}{5}\end{matrix}\right.\)
Thay vào tìm x ta được các tập nghiệm: \(\left(x,y\right)=\left(\frac{3}{5};\frac{4}{5}\right);\left(\frac{4}{5};\frac{3}{5}\right)\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sin\alpha=\frac{3}{5}\\\cos\alpha=\frac{4}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}\sin\alpha=\frac{4}{5}\\\cos\alpha=\frac{3}{5}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\tan\alpha=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\tan\alpha=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}\end{matrix}\right.\)
(Áp dụng \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\))
a: \(=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)
=1+1+1+1/2
=3,5
b: \(=\left(\sin^210^0+\sin^280^0\right)-\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0\right)-\left(\sin^240^0+\sin^250^0\right)\)
=1-1-1+1/4
=-1+1/4=-3/4
c: \(=\left(\sin15^0-\cos75^0\right)+\left(\sin75^0-\cos15^0\right)+\sin30^0\)
=1/2
Đầu tiên là phải biết quy tắc: ở các góc nhọn, nếu độ lớn của góc tăng thì sin và tan đều tăng
\(sin10^0< sin35^0=cos55^0< sin50^0< tan50^0=cot40^0< tan70^0\)
Lý do \(sin50^0< tan50^0\):
\(tan50^0=\frac{sin50^0}{cos50^0}\) mà \(0< cos50^0< 1\Rightarrow\frac{sin50^0}{cos50^0}>sin50^0\Rightarrow tan50^0>sin50^0\)
Đáp án cần chọn là: C