Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Tính các tổng sau:
1, S=1-2+3_4+..+25-26
S =-1+3-5+7-...-53+55 ( có 28 số hạng )
= (-1+3)+(-5+7)+...+(-53+55) ( có 28:2=14 nhóm )
= 2+2+...+2
= 2 . 14
= 28
`@` `\text {Ans}`
`\downarrow`
`a)`
\(\dfrac{3}{4}+\dfrac{2}{3}+\dfrac{3}{5}\)
`=`\(\dfrac{9}{12}+\dfrac{8}{12}+\dfrac{3}{5}\)
`=`\(\dfrac{17}{12}+\dfrac{3}{5}\)
`=`\(\dfrac{85}{60}+\dfrac{36}{60}\)
`=`\(\dfrac{121}{60}\)
`b)`
\(\dfrac{1}{2}\cdot\dfrac{9}{13}\div\dfrac{27}{26}\)
`=`\(\dfrac{1}{2}\cdot\dfrac{9}{13}\cdot\dfrac{26}{27}\)
`=`\(\dfrac{1}{2}\cdot\dfrac{2}{3}\)
`=`\(\dfrac{1}{3}\)
`c)`
\(\dfrac{2}{7}\cdot\dfrac{1}{9}+\dfrac{2}{7}\cdot\dfrac{2}{9}+\dfrac{1}{3}\cdot\dfrac{5}{7}\)
`=`\(\dfrac{2}{7}\cdot\left(\dfrac{1}{9}+\dfrac{2}{9}\right)+\dfrac{1}{3}\cdot\dfrac{5}{7}\)
`=`\(\dfrac{2}{7}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{5}{7}\)
`=`\(\dfrac{1}{3}\cdot\left(\dfrac{2}{7}+\dfrac{5}{7}\right)\)
`=`\(\dfrac{1}{3}\cdot1=\dfrac{1}{3}\)
`d)`
\(11\div\dfrac{5}{2}+11\div\dfrac{7}{3}+11\div\dfrac{35}{6}\)
`=`\(11\cdot\dfrac{2}{5}+11\cdot\dfrac{3}{7}+11\cdot\dfrac{6}{35}\)
`=`\(11\cdot\left(\dfrac{2}{5}+\dfrac{3}{7}+\dfrac{6}{35}\right)\)
`=`\(11\cdot1=11\)
a) 3/4 + 2/3 + 3/5 = 45/60 + 40/60 + 36/60 = 121/60
b) 1/2 x 9/13 : 27/26 = 9/26 x 26/27 = 1/3
c) 2/7 x 1/9 + 2/7 x 2/9 + 1/3 x 5/7 = 2/7 x (1/9 + 2/9) + 5/21 = 2/7 x 1/3 + 5/21 = 2/21 + 5/21 = 1/3
d) 11 : 5/2 + 11 : 7:3 + 11 : 35/6 = 11 x (2/5 + 3/7 + 6/35) = 11 x 1 = 11
a) 1−3+5−7+...+2001−2003+2005=(−2)+(−2)+...+(−2)+2005 (501 số −2) =501.(−2)+2005=1003
`@` `\text {Ans}`
`\downarrow`
`a.`
`A=(1/2-7/13-1/3)+(-6/13+1/2+1 1/3)`
`= 1/2 - 7/13 - 1/3 - 6/13 + 1/2 + 1 1/3`
`= (1/2 + 1/2) + (-7/13 - 6/13) + (-1/3 + 1 1/3) `
`= 1 - 1 + 1`
`= 1`
`b.`
`B=0,75+2/5+(1/9-1 1/2+5/4)`
`= 3/4 + 2/5 + 1/9 - 3/2 + 5/4`
`= (3/4+5/4)+ 1/9 + 2/5 - 3/2`
`= 2 + 1/9 - 11/10`
`= 19/9 - 11/10`
`= 91/90`
`c.`
`(-5/9).3/11+(-13/18).3/11`
`= 3/11*[(-5/9) + (-13/18)]`
`= 3/11*(-23/18)`
`= -23/66`
`d.`
`(-2/3).3/11+(-16/9).3/11`
`= 3/11* [(-2/3) + (-16/9)]`
`= 3/11*(-22/9)`
`= -2/3`
`e.`
`(-1/4).(-2/13)-7/24.(-2/13)`
`= (-2/13)*(-1/4-7/24)`
`= (-2/13)*(-13/24)`
`= 1/12`
`f.`
`(-1/27).3/7+(5/9).(-3/7)`
`= 3/7*(-1/27 - 5/9)`
`= 3/7*(-16/27)`
`= -16/63`
`g.`
`(-1/5+3/7):2/11+(-4/5+4/7):2/11`
`=[(-1/5+3/7)+(-4/5+4/7)] \div 2/11`
`= (-1/5+3/7 - 4/5 + 4/7) \div 2/11`
`= [(-1/5-4/5)+(3/7+4/7)] \div 2/11`
`= (-1+1) \div 2/11`
`= 0 \div 2/11 = 0`
A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)
A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)
A=3.(1-1/400)
A=3.399/400
A=1197/400
A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)
A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)
A=3.(1-1/400)
A=3.399/400
A=1197/400
Bài 1: Tính nhanh:
A = 3/1*2 + 3/2*3 + 3/3*4 + ... + 3/399*400
=>3A = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/399*400
3A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/399 - 1/400
3A = 1 - 1/400
3A = 400/400 - 1/400
3A = 399/400
A = 399/400 : 3
A = 399/400 . 1/3
A = 133/400.
Có gì ko hiểu bn ib mk nha.^^
\(A=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{399.400}\)
\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)
\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)
\(A=3.\left(1-\frac{1}{400}\right)\)
\(A=3.\frac{399}{400}\)
\(A=\frac{1197}{400}\)
\(B=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{399.400}\)
\(B=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)
\(B=5.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)
\(B=5.\left(1-\frac{1}{400}\right)\)
\(B=5.\frac{399}{400}\)
\(B=\frac{399}{80}\)
\(C=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\)
\(C=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\)
\(C=\frac{1}{5}-\frac{1}{151}\)
\(C=\frac{146}{755}\)
\(D=\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{149.151}\)
\(D=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\right)\)
\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\right)\)
\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{151}\right)\)
\(D=\frac{3}{2}.\frac{146}{755}\)
\(D=\frac{219}{755}\)
\(E=\frac{11}{1.3}+\frac{11}{3.5}+\frac{11}{5.7}+...+\frac{11}{99.101}\)
\(E=\frac{11}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(E=\frac{11}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(E=\frac{11}{2}.\left(1-\frac{1}{101}\right)\)
\(E=\frac{11}{2}.\frac{100}{101}\)
\(E=\frac{550}{101}\)
_Chúc bạn học tốt_
\(S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
S=2\1*3+2\3*5+2\5*7+2\7*9+2\9*11
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)