K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2023

a, \(\dfrac{1}{2}\) - ( - \(\dfrac{1}{3}\) ) + \(\dfrac{1}{23}\) + \(\dfrac{1}{6}\)

 =  \(\dfrac{5}{6}\)  + \(\dfrac{1}{23}\) + \(\dfrac{1}{6}\)

= 1 + \(\dfrac{1}{23}\)

 = \(\dfrac{24}{23}\) 

b, \(\dfrac{11}{24}\) - \(\dfrac{5}{41}\) + \(\dfrac{13}{24}\) + 0,5 - \(\dfrac{36}{41}\)

= (\(\dfrac{11}{24}\) + \(\dfrac{13}{24}\)) - ( \(\dfrac{5}{41}\) + \(\dfrac{36}{41}\)) + 0,5

= 1 - 1 + 0,5

= 0,5 

 

17 tháng 8 2023

c,\(-\dfrac{1}{12}-\left(\dfrac{1}{6}-\dfrac{1}{4}\right)\)

=\(-\dfrac{1}{12}-\left(-\dfrac{1}{12}\right)\)

=0

d, \(\dfrac{1}{6}-\left[\dfrac{1}{6}-\left(\dfrac{1}{4}+\dfrac{9}{12}\right)\right]\)

\(\dfrac{1}{6}-\left[\dfrac{1}{6}-1\right]\)

\(\dfrac{1}{6}-\left(-\dfrac{5}{6}\right)\)

= 1

a, \(\frac{x}{12}=-\frac{1}{24}-\frac{1}{8}\Leftrightarrow\frac{x}{12}=-\frac{1}{6}\Leftrightarrow6x=-12\Leftrightarrow x=-2\)

b, \(\frac{2}{3}x=\frac{1}{2}x+\frac{15}{12}\Leftrightarrow\frac{2x}{3}=\frac{x}{2}+\frac{15}{12}\Leftrightarrow\frac{4x}{6}-\frac{3x}{6}=\frac{15}{12}\Leftrightarrow\frac{x}{6}=\frac{15}{12}\Leftrightarrow x=\frac{15}{2}\)

c, \(\left|\frac{3}{4}-2x\right|+\frac{1}{6}=\frac{9}{2}\Leftrightarrow\left|\frac{3}{4}-2x\right|=\frac{13}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{4}-2x=\frac{13}{3}\\\frac{3}{4}-2x=-\frac{13}{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-\frac{43}{12}\\2x=\frac{61}{12}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{43}{24}\\x=\frac{61}{24}\end{cases}}}\)

a) Ta có: \(D=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}\)

\(=\dfrac{2}{3}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{24}+\dfrac{1}{24}-\dfrac{1}{48}+\dfrac{1}{48}-\dfrac{1}{96}\)

\(=\dfrac{2}{3}-\dfrac{1}{96}\)

\(=\dfrac{63}{96}=\dfrac{21}{32}\)

b)

Sửa đề: \(E=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2048}\)

Ta có: \(E=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2048}\)

\(\Leftrightarrow\dfrac{1}{2}\cdot E=\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+...+\dfrac{1}{4096}\)

\(\Leftrightarrow\dfrac{1}{2}\cdot E=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{2048}-\dfrac{1}{4096}\)

\(\Leftrightarrow\dfrac{E}{2}=\dfrac{1}{2}-\dfrac{1}{4096}=\dfrac{2047}{4096}\)
hay \(E=\dfrac{2047}{2048}\)

16 tháng 8 2023

a) \(\dfrac{13}{20}+\dfrac{3}{5}+x=\dfrac{5}{6}\)

\(\Rightarrow\dfrac{5}{4}+x=\dfrac{5}{6}\)

\(\Rightarrow x=\dfrac{5}{6}-\dfrac{5}{4}\)

\(\Rightarrow x=\dfrac{-5}{12}\)

b) \(x+\dfrac{1}{3}=\dfrac{2}{5}-\dfrac{-1}{3}\)

\(\Rightarrow x+\dfrac{1}{3}=\dfrac{11}{15}\)

\(\Rightarrow x=\dfrac{11}{15}-\dfrac{1}{3}\)

\(\Rightarrow x=\dfrac{2}{5}\)

c)\(\dfrac{-5}{8}-x=\dfrac{-3}{20}-\dfrac{-1}{6}\)

\(\dfrac{-5}{8}-x=\dfrac{1}{60}\)

\(\Rightarrow x=\dfrac{-5}{8}-\dfrac{1}{60}\)

\(\Rightarrow x=\dfrac{-77}{120}\)

d) \(\dfrac{3}{5}-x=\dfrac{1}{4}+\dfrac{7}{10}\)

\(\Rightarrow\dfrac{3}{5}-x=\dfrac{19}{20}\)

\(\Rightarrow x=\dfrac{3}{5}-\dfrac{19}{20}\)

\(\Rightarrow x=\dfrac{-7}{20}\)

e) \(\dfrac{-3}{7}-x=\dfrac{4}{5}+\dfrac{-2}{3}\)

\(\Rightarrow\dfrac{-3}{7}-x=\dfrac{2}{15}\)

\(\Rightarrow x=\dfrac{-3}{7}-\dfrac{2}{15}\)

\(\Rightarrow x=\dfrac{-59}{105}\)

16 tháng 8 2023

g) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)

\(\Rightarrow\dfrac{-5}{6}-x=\dfrac{1}{4}\)

\(\Rightarrow x=\dfrac{-5}{6}-\dfrac{1}{4}\)

\(\Rightarrow x=\dfrac{-13}{12}\)

`@` `\text {Ans}`

`\downarrow`

`a)`

\(\left(\dfrac{7}{8}-\dfrac{3}{4}\right)\cdot1\dfrac{1}{3}-\dfrac{2}{3}\cdot0,5\)

`=`\(\dfrac{1}{8}\cdot\dfrac{4}{3}-\dfrac{1}{3}\)

`=`\(\dfrac{1}{6}-\dfrac{1}{3}=-\dfrac{1}{6}\)

`b)`

\(\left(2+\dfrac{5}{6}\right)\div1\dfrac{1}{5}+\left(-\dfrac{7}{12}\right)\)

`=`\(\dfrac{17}{6}\div1\dfrac{1}{5}-\dfrac{7}{12}\)

`=`\(\dfrac{85}{36}-\dfrac{7}{12}=\dfrac{16}{9}\)

`c)`

\(75\%-1\dfrac{1}{2}+0,5\div\dfrac{5}{12}\)

`=`\(-\dfrac{3}{4}+\dfrac{6}{5}=\dfrac{9}{20}\)

23 tháng 7 2023

a) \(\left(\dfrac{7}{8}-\dfrac{3}{4}\right).1\dfrac{1}{3}-\dfrac{2}{3}.0,5\)

\(=\left(\dfrac{7}{8}-\dfrac{6}{8}\right).\dfrac{4}{3}-\dfrac{2}{3}.\dfrac{1}{2}\)

\(=\dfrac{1}{8}.\dfrac{4}{3}-\dfrac{2}{3}.\dfrac{1}{2}\)

\(=\dfrac{1}{6}-\dfrac{1}{3}\)

\(=\dfrac{-1}{6}\)

b) \(\left(2+\dfrac{5}{6}\right):1\dfrac{1}{5}+\dfrac{-7}{12}\)

\(=\left(\dfrac{12}{6}+\dfrac{5}{6}\right):\dfrac{6}{5}+\dfrac{-7}{12}\)

\(=\dfrac{17}{6}.\dfrac{5}{6}+\dfrac{-7}{12}\)

\(=\dfrac{85}{36}+\dfrac{-7}{12}\)

\(=\dfrac{16}{9}\)

c) \(75\%-1\dfrac{1}{2}+0,5:\dfrac{5}{12}\)

\(=\dfrac{3}{4}-\dfrac{3}{2}+\dfrac{1}{2}.\dfrac{12}{5}\)

\(=\dfrac{3}{4}-\dfrac{6}{4}+\dfrac{6}{5}\)

\(=\dfrac{-3}{4}+\dfrac{6}{5}\)

\(=\dfrac{9}{20}\)

18 tháng 8 2017

\(a,\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)

\(=1-\frac{1}{7}\)

\(=\frac{6}{7}\)

\(b,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)

Ta có :

\(\frac{1}{2}=1-\frac{1}{2}\)

\(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\)

\(\frac{1}{8}=\frac{1}{4}-\frac{1}{8}\)

\(\frac{1}{16}=\frac{1}{8}-\frac{1}{16}\)

\(\frac{1}{32}=\frac{1}{16}-\frac{1}{32}\)

Thay vào ta có :

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}\)

\(=1-\frac{1}{32}\)

\(=\frac{31}{32}\)

\(c,\)\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)

Ta có :

\(\frac{1}{2}=1-\frac{1}{2}\)

\(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\)

...................

\(\frac{1}{256}=\frac{1}{128}-\frac{1}{256}\)

Thay vào ta có :

\(=\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{128}-\frac{1}{256}\)

\(=1-\frac{1}{256}\)

\(=\frac{255}{256}\)

Giải:

a) \(\dfrac{-5}{8}=\dfrac{x}{16}\) 

\(\Rightarrow x=\dfrac{16.-5}{8}=-10\) 

\(\dfrac{3x}{9}=\dfrac{2}{6}\) 

\(\Rightarrow3x=\dfrac{2.9}{6}=3\) 

\(\Rightarrow x=1\)

b) \(\dfrac{x+3}{15}=\dfrac{1}{3}\)  

\(\Rightarrow x+3=\dfrac{1.15}{3}=5\) 

\(\Rightarrow x=2\)

\(\dfrac{6}{2x+1}=\dfrac{2}{7}\) 

\(\Rightarrow2x+1=\dfrac{6.7}{2}=21\) 

\(\Rightarrow x=10\)

c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\) 

\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\) 

\(\Rightarrow x-6=\dfrac{18.4}{-12}=-6\) 

\(\Rightarrow x=0\) 

\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\) 

\(\Rightarrow y=\dfrac{-12.24}{18}=-16\) 

 \(\dfrac{3-x}{-12}=\dfrac{16}{y+1}=\dfrac{192}{-72}\) 

\(\Rightarrow\dfrac{3-x}{-12}=\dfrac{192}{-72}\) 

\(\Rightarrow3-x=\dfrac{192.-12}{-72}=32\) 

\(\Rightarrow x=-29\) 

\(\Rightarrow\dfrac{16}{y+1}=\dfrac{192}{-72}\) 

\(\Rightarrow y+1=\dfrac{16.-72}{192}=-6\) 

d) \(\dfrac{-2}{3}< \dfrac{x}{5}< \dfrac{-1}{6}\) 

\(\Rightarrow\dfrac{-20}{30}< \dfrac{6x}{30}< \dfrac{-5}{30}\) 

\(\Rightarrow6x\in\left\{-18;-12;-6\right\}\) 

\(\Rightarrow x\in\left\{-3;-2;-1\right\}\) 

\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\) 

\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\) 

\(\Rightarrow5x\in\left\{-5;0;5;10\right\}\) 

\(\Rightarrow x\in\left\{-1;0;1;2\right\}\) 

e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\) 

\(\Rightarrow\dfrac{x+46}{20}=x+\dfrac{2}{5}\) 

\(\Rightarrow\dfrac{x+46}{20}=\dfrac{5x+2}{5}\) 

\(\Rightarrow5.\left(x+46\right)=20.\left(5x+2\right)\) 

\(\Rightarrow5x+230=100x+40\) 

\(\Rightarrow5x-100x=40-230\) 

\(\Rightarrow-95x=-190\) 

\(\Rightarrow x=-190:-95\) 

\(\Rightarrow x=2\) 

\(y\dfrac{5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow y+\dfrac{5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow\dfrac{y^2+5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow y^2+5=86\) 

\(\Rightarrow y^2=86-5\) 

\(\Rightarrow y^2=81\) 

\(\Rightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\) 

Chúc bạn học tốt!

Bạn vào:câu hỏi của :Vũ Ngân Hà -olm

5 tháng 3 2018

\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10+6\cdot12}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20+18\cdot24}\)

\(A=\frac{2\cdot3\left[1\cdot2\right]+2\cdot3\left[2\cdot4\right]+2\cdot3\left[3\cdot6\right]+2\cdot3\left[4\cdot8\right]+2\cdot3\left[5\cdot10\right]}{3\cdot4\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}\)

\(A=\frac{\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}{2\cdot3\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}=\frac{1}{2\cdot3}=\frac{1}{6}\)