Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{\dfrac{x}{x+1}}{\dfrac{x^2}{x^2+x+1}}-\dfrac{2x+1}{x^2+x}\right)\dfrac{x^2-1}{x-1}\)ĐK : \(x\ne\pm1\)
\(=\left(\dfrac{x}{x+1}.\dfrac{x^2+x+1}{x^2}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)=\left(\dfrac{x^2+x-1}{x^2+x}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)\)
\(=\left(\dfrac{x^2+x-1-2x-1}{x\left(x+1\right)}\right)\left(x+1\right)=\dfrac{x^2-3x-2}{x}\)
à xin lỗi mình nhầm dòng cuối
\(=\dfrac{x^2-x-2}{x}=\dfrac{\left(x+1\right)\left(x-2\right)}{x}\)
Để biểu thức trên nhận giá trị dương khi
\(\dfrac{\left(x+1\right)\left(x-2\right)}{x}>0\)bạn tự xét TH cả tử và mẫu nhé, mình đánh trên này bị lỗi
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
\(-2\left(x-2\right)\left(2+x\right)+\left(x-3\right)^2\)
\(=-2\left(x^2-4\right)+\left(x^2-6x+9\right)\)
\(=8-2x^2+x^2-6x+9\)
\(=-x^2-6x+17\)
\(A=\left(\dfrac{x}{x-2}-\dfrac{2}{x+2}\right):\dfrac{x^2+4}{x+2}\)
\(=\left(\dfrac{x.\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{x^2-4}{x+2}\)
\(=\left(\dfrac{x^2+2x}{\left(x+2\right)\left(x-2\right)}-\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{x^2-4}{x+2}\)
\(=\left(\dfrac{x^2+2x-2x+4}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{x^2-4}{x+2}\)
\(=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}:\dfrac{x^2-4}{x+2}\)
\(=\dfrac{x^2+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{x^2-4}\)
\(=\dfrac{\left(x^2+4\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x^2-4\right)}\)
\(=\dfrac{x^2+4}{\left(x-2\right)\left(x^2-4\right)}\)
\(=\dfrac{x+2}{\left(x-2\right)^2}:\left(\dfrac{6-x^2+x+x^2-4}{x\left(x-2\right)}\right)\)
\(=\dfrac{x+2}{\left(x-2\right)^2}\cdot\dfrac{x\left(x-2\right)}{x+2}=\dfrac{x}{x-2}\)
(2 + x)(x - 5) - (x + 2)(x - 2)
= ( x + 2 )(x - 5 - x + 2 )
= ( x + 2 ) (-3)
-3x - 6
\(\left(2+x\right)\left(x-5\right)-\left(x+2\right)\left(x-2\right).\)
\(=\left(x+2\right)\left(x-5-x+2\right).\)
\(=\left(x+2\right)\left(-3\right).\)
\(=-3x-6.\)
\(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=\left(x+2\right)\left[\left(x+2\right)\left(x-2\right)\right]\)
\(=\left(x+2\right)\left(x^2-4\right)=x^3-4x+2x^2-8\)
=X^2 + 4X + 4 - (X^2 - 4)
= 4X + 8 = 4(X+2)