K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

b) \(=\left(5+2\sqrt{3}\right).\sqrt{25-2.5.2\sqrt{3}+12}\\ =\left(5+2\sqrt{3}\right).\sqrt{\left(5-2\sqrt{3}\right)^2}=\left(5+2\sqrt{3}\right).\left(5-2\sqrt{3}\right)=25-12=13\)

 

19 tháng 10 2021

c: \(\left(2-\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\dfrac{\sqrt{10}+\sqrt{5}}{\sqrt{2}+1}-2\right)\)

\(=\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\)

=1

23 tháng 6 2021

\(ĐKXĐ:x\ge0;x\ne1;0\)

\(A=\frac{2x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(A=\frac{2x+2}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(A=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(A=\frac{2x+2+2\sqrt{x}}{\sqrt{x}}\)

\(A=2\sqrt{x}+\frac{2}{\sqrt{x}}+2\)

a/d bđt cauchy 

\(2\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{2.2}=2.2=4\)

\(A\ge4+2=6\)

\(< =>A>5\)

dấu "=" xảy ra khi x=1

30 tháng 8 2021

a, \(\left(\frac{1}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}+2}\right):\frac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)ĐK : x >= 0 ; \(x\ne1\)

\(=\left(\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}}\)

b, \(F=\frac{5}{2}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{2}\Rightarrow2\sqrt{x}+4=5\sqrt{x}\Leftrightarrow3\sqrt{x}=4\Leftrightarrow x=\frac{16}{9}\)

30 tháng 8 2021

ĐK : x > 0 , x khác 1

\(bthuc=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}}\)

Để bthuc = 5/2 thì \(\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{2}\Rightarrow2\sqrt{x}+4=5\sqrt{x}\Leftrightarrow3\sqrt{x}=4\Leftrightarrow x=\frac{16}{9}\left(tm\right)\)

3 tháng 7 2021

\(=\left(\sqrt{5}-\sqrt{3}\right).\sqrt{2}.\sqrt{8-\sqrt{15}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right).\sqrt{16-2\sqrt{15}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{15-2\sqrt{15}+1}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{15}-1\right)^2}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\left|\sqrt{15}-1\right|\)\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{15}-1\right)=5\sqrt{3}-\sqrt{5}-3\sqrt{5}+\sqrt{3}\)

\(=6\sqrt{3}-4\sqrt{5}\)

Vậy...

3 tháng 7 2021

\(\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-\sqrt[]{15}}\)

\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-\sqrt{15}}\)

\(=\sqrt{16-2\sqrt{15}}.\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{\left(\sqrt{15}-1\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{15}-1\right)\left(\sqrt{5}-\sqrt{3}\right)=5\sqrt{3}-3\sqrt{5}-\sqrt{5}+\sqrt{3}=6\sqrt{3}-4\sqrt{5}\)

21 tháng 10 2021

Chọn A

23 tháng 6 2021

a, \(B=\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right)\frac{\sqrt{a}+1}{\sqrt{a}}\)ĐKXĐ : \(a>0;a\ne1\)

\(=\left(\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\right)\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\left(\frac{a+\sqrt{a}-2-a+\sqrt{a}+2}{a-1}\right)\frac{1}{\sqrt{a}}\)

\(=\frac{2\sqrt{a}}{\left(a-1\right)\sqrt{a}}=\frac{2}{a-1}\)

b, quá rõ ràng rồi nhé 

a) ĐKXĐ:x>0

A=x2+xx−x+1−2x+xx+1

⇔A=x(x+1)(x−x+1)x−x+1−x(2x+1)x+1

⇔A=x+x−2x−1+1

⇔A=x−x

b) Để A = 0

⇔x−x=0

⇔x(x−1)=0

⇔[x=0x=1

⇔[x=0(ktm)x=1(tm)

vậy ...

a: =4-10

=-6

8 tháng 12 2021

a, \(\dfrac{\sqrt{80}}{\sqrt{5}}\)-\(\sqrt{5}\).\(\sqrt{20}\)\(\sqrt{16}\)-10=-6

b, (\(\sqrt{28}\)-\(\sqrt{12}\)-\(\sqrt{7}\))\(\sqrt{7}\)+2\(\sqrt{21}\)=\(\sqrt{196}\)-\(\sqrt{84}\)-7+2 \(\sqrt{21}\)=14-7=7

c, \(\sqrt[3]{2}\).\(\sqrt[3]{32}\)+\(\sqrt{2}\).\(\sqrt{32}\)=\(\sqrt[3]{64}\)+\(\sqrt{64}\)=4+8=12

d, \(2\sqrt{8\sqrt{3}}\)-\(\sqrt{2\sqrt{3}}\)-\(\sqrt{9\sqrt{12}}\)=\(4\sqrt{12}\)-\(\sqrt{12}\)-\(3\sqrt{12}\)=0

1: Thay x=16 vào A, ta được:

\(A=\dfrac{16-4}{4-2}=\dfrac{12}{2}=6\)

2: \(B=\dfrac{x-4+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)