Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
Tự làm đi easy quá mà :)))) không biết quy đồng mà rút gọn hay sao
\(A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\left(a>0;a\ne1\right)\)
\(A=\frac{\sqrt{a}.\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}-1\right)+2}{a-1}\)
\(A=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{a-1}\)
\(A=\frac{\sqrt{a}+1}{\sqrt{a}}:\frac{1}{\sqrt{a}-1}\)
\(A=\frac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)=\frac{a-1}{\sqrt{a}}\)
Vậy..............
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{1}{a-1}\right):\frac{a}{2+2\sqrt{a}}\)( điều kiện như trên )
\(B=\frac{\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)+1}{a-1}:\frac{a}{2\left(1+\sqrt{a}\right)}\)
\(B=\frac{a-\sqrt{a}-a-\sqrt{a}+1}{a-1}:\frac{a}{\left(\sqrt{a}+1\right).2}\)
\(B=\frac{1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right).2}{a}\)
\(B=\frac{2\left(1-2\sqrt{a}\right)}{a\left(\sqrt{a}-1\right)}\)
Vậy.........
_Minh ngụy_
\(ĐKXĐ:x\ge0;x\ne1;0\)
\(A=\frac{2x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(A=\frac{2x+2}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(A=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(A=\frac{2x+2+2\sqrt{x}}{\sqrt{x}}\)
\(A=2\sqrt{x}+\frac{2}{\sqrt{x}}+2\)
a/d bđt cauchy
\(2\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{2.2}=2.2=4\)
\(A\ge4+2=6\)
\(< =>A>5\)
dấu "=" xảy ra khi x=1
a, \(\left(\frac{1}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}+2}\right):\frac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)ĐK : x >= 0 ; \(x\ne1\)
\(=\left(\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}}\)
b, \(F=\frac{5}{2}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{2}\Rightarrow2\sqrt{x}+4=5\sqrt{x}\Leftrightarrow3\sqrt{x}=4\Leftrightarrow x=\frac{16}{9}\)
ĐK : x > 0 , x khác 1
\(bthuc=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}}\)
Để bthuc = 5/2 thì \(\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{2}\Rightarrow2\sqrt{x}+4=5\sqrt{x}\Leftrightarrow3\sqrt{x}=4\Leftrightarrow x=\frac{16}{9}\left(tm\right)\)
\(a,ĐKXĐ:\hept{\begin{cases}a\ge0,\sqrt{a}\ne0\\\sqrt{a}-1\ne0\\\sqrt{a}-2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\\a\ne4\end{cases}}}\)
\(b,\)Rút gọn : \(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(Q=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)
\(Q=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a^2-1-a^2+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\)
\(Q=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
c, bn thay vào rồi tính nha
a) ĐKXĐ :\(x>0\) và \(x\ne1\)
Rút gọn : A= \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
A = \(\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
A = \(\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
A = \(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
A =\(\frac{\sqrt{x}-1}{\sqrt{x}}\)
b) với \(x>0\)và \(x\ne1\)
Để A < \(\frac{1}{3}\)\(\Leftrightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{3}\)\(\)
\(\Leftrightarrow\)\(3\left(\sqrt{x}-1\right)< \sqrt{x}\)
\(\Leftrightarrow\) \(3\sqrt{x}-3< \sqrt{x}\)
\(\Leftrightarrow\) \(3\sqrt{x}-\sqrt{x}< 3\)
\(\Leftrightarrow\) \(2\sqrt{x}< 3\)
\(\Leftrightarrow\) \(\sqrt{x}< \frac{3}{2}\)
\(\Leftrightarrow\) \(x< \frac{9}{4}\)
Kết hợp với ĐKXĐ ta được \(0< x< \frac{9}{4}\)
vậy với \(x< \frac{1}{3}\Leftrightarrow0< x< \frac{9}{4}\)
Một xưởng sản xuất có 200 người chia làm 3 tổ. Số người ở Tổ I và Tổ II gấp 3 lần số người ở Tổ 3. Nếu Tổ I bớt đi 10 người thì số người ở Tổ I bằng số người ở Tổ II. Hỏi mỗi tổ có bao nhiêu người.
a, \(B=\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right)\frac{\sqrt{a}+1}{\sqrt{a}}\)ĐKXĐ : \(a>0;a\ne1\)
\(=\left(\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\right)\frac{\sqrt{a}+1}{\sqrt{a}}\)
\(=\left(\frac{a+\sqrt{a}-2-a+\sqrt{a}+2}{a-1}\right)\frac{1}{\sqrt{a}}\)
\(=\frac{2\sqrt{a}}{\left(a-1\right)\sqrt{a}}=\frac{2}{a-1}\)
b, quá rõ ràng rồi nhé
a) ĐKXĐ:x>0ĐKXĐ:x>0
A=x2+√xx−√x+1−2x+√x√x+1A=x2+xx−x+1−2x+xx+1
⇔A=√x(√x+1)(x−√x+1)x−√x+1−√x(2√x+1)√x+1⇔A=x(x+1)(x−x+1)x−x+1−x(2x+1)x+1
⇔A=x+√x−2√x−1+1⇔A=x+x−2x−1+1
⇔A=x−√x⇔A=x−x
b) Để A = 0
⇔x−√x=0⇔x−x=0
⇔√x(√x−1)=0⇔x(x−1)=0
⇔[√x=0√x=1⇔[x=0x=1
⇔[x=0(ktm)x=1(tm)⇔[x=0(ktm)x=1(tm)
vậy ...