Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=9x^4-\left(2x+1\right)^2-\left(9x^4+6x^2+1\right)\\ =9x^4-4x^2-4x-1-9x^4-6x^2-1\\ =-10x^2-4x-2\)
\(=\dfrac{-8xy\left(1-3x\right)^3:4x\left(1-3x\right)}{12x^3\left(1-3x\right):4x\left(1-3x\right)}=\dfrac{-2y\left(1-3x\right)^2}{3x^2}\)
\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x-y\right)\left(x+y\right)-4x^2\\ P=\left(x-y-x-y\right)^2-4x^2\\ P=4y^2-4x^2=4\left(y-x\right)\left(x+y\right)\)
\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
\(A=\left(\dfrac{2-x}{2+x}-\dfrac{16}{4-x^2}-\dfrac{2+x}{2-x}\right)\)
\(\Rightarrow A=\left(\dfrac{\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}-\dfrac{16}{\left(2+x\right)\left(2-x\right)}-\dfrac{\left(2+x\right)^2}{\left(2+x\right)\left(2-x\right)}\right)\)\(\Rightarrow A=\left(\dfrac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}-\dfrac{16}{\left(2+x\right)\left(2-x\right)}-\dfrac{4+4x+x^2}{\left(2+x\right)\left(2-x\right)}\right)\)
\(\Rightarrow A=\dfrac{4-4x+x^2-16-4-4x-x^2}{\left(2+x\right)\left(2-x\right)}\)
\(\Rightarrow A=\dfrac{-8x-16}{\left(2+x\right)\left(2-x\right)}\)
\(\Rightarrow A=\dfrac{-8\left(x+2\right)}{\left(2+x\right)\left(2-x\right)}\)
\(\Rightarrow A=\dfrac{-8}{2-x}\)
\(\Rightarrow A=\dfrac{8}{x-2}\)
\(12x^2y^3-10x^2y^3:5x^2y^2+4xy\left(1-3xy\right)^2\)
\(=12x^2y^3-2y+4xy\left(1-6xy+9x^2y^2\right)\)
\(=12x^2y^3-2y+4xy-24x^2y^2+36x^3y^3\)
\((x+y)^3-(x-y)^3\)
\(=x^3+3x^2y+3xy^2+y^3-(x^3-3x^2y+3xy^2-y^3)\)
\(=6x^2y+2y^3\)
Cách khác:
Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
\(=6x^2y+2y^3\)
\(\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3xy\left(x+y\right)\)
a) \(x\left(2x^2+5x-1\right)=x.2x^2+x.5x-x.1=2x^3+5x^2-x\)
b) \(2\left(x^2-4x+6\right)=2x^2-2.4x+2.6=2x^2-8x+12\)
c) \(\left(3x-1\right)\left(2x+3\right)=6x^2+9x-2x-3=6x^2+7x-3\)
d) \(\left(7+8x\right)\left(x-9\right)-x^2+6x=7x-63+8x^2-72x-x^2+6x\)
\(=\left(8x^2-x^2\right)+\left(7x-72x+6x\right)+\left(-63\right)=7x^2-59x-63\)
e) \(\left(x+2\right)^2-x\left(x-3\right)=x^2+4x+4-x^2+3x=7x+4\)
f) \(\left(x-5\right)^2-x\left(x-3\right)=x^2-10x+25+8x-x^2=-2x+25\)
g) \(\left(x+5\right)\left(3-x\right)+\left(x-2\right)^2=3x-x^2+15-5x+\left(x^2-4x+4\right)\)
\(=-x^2-2x+15+x^2-4x+4=\left(-x^2+x^2\right)-\left(2x+4x\right)+\left(15+4\right)=-6x+19\)
h) \(\left(x+4\right)\left(x-4\right)-x\left(x+7\right)=x^2-4^2-\left(x^2+7x\right)=x^2-16-x^2-7x=-16-7x\)
i) \(9x\left(2-4x\right)+\left(6x+1\right)\left(6x-1\right)=18x-36x^2+36x^2-1=18x-1\)
j) \(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2=x^2+2xy+y^2-2\left(x^2-y^2\right)+x^2-2xy+y^2\)
\(=x^2+2xy+y^2-2x^2+2y^2+x^2-2xy+y^2=4y^2\)