Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
Đặt \(x=\frac{b}{c-a},y=\frac{c}{a-b},z=\frac{a}{b-c}\) , suy ra : \(P=-xy-yz-xz\)
Lại có : \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Rightarrow xy+yz+xz=-1\Rightarrow P=1\)
\(Q=\frac{\left[\left(x+\frac{1}{x}\right)^2\right]^3-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)
\(=3x+\frac{3}{x}=3\left(x+\frac{1}{x}\right)\)
Ta có
\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}=\frac{a^2+ab-bc-ab}{\left(a+b\right)\left(a+c\right)}=\frac{a\cdot\left(a+b\right)-b\cdot\left(c+a\right)}{\left(a+b\right)\left(c+a\right)}=\frac{a}{a+c}-\frac{b}{a+b}\left(1\right)\)
tương tự
\(\frac{b^2-bc}{\left(a+b\right)\left(b+c\right)}=\frac{b}{a+b}-\frac{c}{b+c}\left(2\right)\)
\(\frac{c^2-ab}{\left(c+a\right)\left(b+c\right)}=\frac{c}{c+b}-\frac{a}{a+b}\left(3\right)\)
Cộng (1);(2) và (3) ta có
\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(c+b\right)}=\frac{a}{a+c}-\frac{b}{a+b}+\frac{b}{a+b}-\frac{c}{b+c}+\frac{c}{c+b}-\frac{a}{a+b}=0 \)
Thay \(ab+bc+ca=1\) ta có:
\(1+a^2=ab+bc+ca+a^2=b\left(c+a\right)+a\left(c+a\right)=\left(c+a\right)\left(a+b\right)\)
Tương tự: \(1+b^2=\left(b+c\right)\left(a+b\right);\) \(1+c^2=\left(c+a\right)\left(b+c\right)\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
\(\Rightarrow\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}=1\). Vậy biểu thức đó rút gọn lại bằng 1.
Giải
ab + bc + ca = abc =>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
chọn a = 7 ; b = 3 ; c = \(\frac{21}{11}\)
=> \(\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+a\right)\left(b+c\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}=0,81>\frac{3}{4}\)
Vậy BĐT phải là :
\(\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+a\right)\left(b+c\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}\ge\frac{3}{4}\)
quy đồng ta có :
\(\frac{b^2c+bc^2+c^2a+ca^2+a^2b+ab^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}\)
<=> 4 .( b2c + bc2 + c2a + ca2 + a2b +ab2 ) \(\ge\)3(2abc + a2b + ab2 + b2c + bc2 + c2a + ca2 )
<=> a2b + ab2 +b2c +bc2 + c2a + ac2 \(\ge\)6abc
<=> \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
<=>\(\frac{a+b}{c}+1+\frac{b+c}{a}+\frac{c+a}{b}\ge9\)
<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) ( 1 )
Ta có BĐT phụ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
<=> ( a + b + c )( ab + bc + ac ) \(\ge\)9abc
Thật vậy do \(a+b+c\ge3\sqrt[3]{abc}\)
\(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)
=> \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)=9\)
đpcm .Dấu " = " xảy ra khi a= b = c
Đề em nghĩ có chút sai sai nên em sửa rồi nha anh ( chắc vậy )
\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)=\left(a+b\right)\left(a-b\right)+c\left(a-b\right)=\)\(\left(a-b\right)\left(a+b+c\right)\)
Tương tự:
\(b^2+ab-c^2-ac=\left(b-c\right)\left(a+b+c\right)\)
\(c^2+bc-a^2-ab=\left(c-a\right)\left(a+b+c\right)\)
\(Q=\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)
\(=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)
\(=\frac{-bc\left(b-c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}+\frac{-ca\left(c-a\right)}{\left(b-c\right)\left(a-b\right)\left(c-a\right)}+\frac{-ab\left(a-b\right)}{\left(c-a\right)\left(b-c\right)\left(a-b\right)}\)
\(=\frac{-b^2c+bc^2-c^2a+ca^2-a^2b+ab^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{b^2\left(a-c\right)+ca\left(a-c\right)-b\left(a-c\right)\left(a+c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left(b^2+ca-ba-bc\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left[b\left(b-a\right)-c\left(b-a\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left(b-c\right)\left(b-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)