Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{-bc\left(b-c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}+\frac{-ca\left(c-a\right)}{\left(b-c\right)\left(a-b\right)\left(c-a\right)}+\frac{-ab\left(a-b\right)}{\left(c-a\right)\left(b-c\right)\left(a-b\right)}\)
\(=\frac{-b^2c+bc^2-c^2a+ca^2-a^2b+ab^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{b^2\left(a-c\right)+ca\left(a-c\right)-b\left(a-c\right)\left(a+c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left(b^2+ca-ba-bc\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left[b\left(b-a\right)-c\left(b-a\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left(b-c\right)\left(b-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Áp dụng BĐT AM-GM dạng mẫu số được
\(\frac{a^4}{b\left(b+c\right)}+\frac{b^4}{c\left(c+a\right)}+\frac{c^4}{a\left(a+b\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(ab+bc+ac\right)}\)
Ta có : \(a^2+b^2+c^2\ge ab+bc+ac\) (dễ dàng chứng minh được)
\(\Rightarrow a^2+b^2+c^2+ab+bc+ac\ge2\left(ab+bc+ac\right)\) và \(\left(a^2+b^2+c^2\right)^2\ge\left(ab+bc+ac\right)^2\)
Do vậy \(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(ab+bc+ac\right)}\ge\frac{\left(ab+bc+ac\right)^2}{2\left(ab+bc+ac\right)}=\frac{ab+bc+ac}{2}\)
Dấu "=" xảy ra khi a = b = c > 0
em mới học lớp 6 thôiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 ) (a+b+c)^2 >= 3(ab+bc+ac)
<=> a^2 + b^2 + c^2 >= ab + bc + ac
<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac
<=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + a^2 - 2ac + c^2 >= 0
<=> (a - b)^2 + (b-c)^2 + (a-c)^2 >= 0
( luôn đúng với mọi a ; b ; c )
( đpcm )
2 ) P = \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}\)
AD BĐT Cô - si và BĐT phụ đã cmt ở trên ta có : \(P\ge2.\frac{1}{3}+\frac{8.3.\left(ab+bc+ac\right)}{9\left(ab+bc+ac\right)}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu " = " xảy ra <=> a = b = c
Khôi Bùi : theo e ý 2 có thể đơn giản hóa vấn đề bằng cách đặt ẩn phụ
đặt \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}=t\left(t\ge3\right)\)
\(\Rightarrow P=t+\frac{1}{t}=\frac{t}{9}+\frac{1}{t}+\frac{8}{9}t\)
Áp dụng BĐT AM-GM ta có:
\(P\ge2.\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}t\ge\frac{2.1}{3}+\frac{8}{9}.3=\frac{10}{3}\)
Dấu " = " xảy ra <=> a=b
Giải
ab + bc + ca = abc =>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
chọn a = 7 ; b = 3 ; c = \(\frac{21}{11}\)
=> \(\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+a\right)\left(b+c\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}=0,81>\frac{3}{4}\)
Vậy BĐT phải là :
\(\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+a\right)\left(b+c\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}\ge\frac{3}{4}\)
quy đồng ta có :
\(\frac{b^2c+bc^2+c^2a+ca^2+a^2b+ab^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}\)
<=> 4 .( b2c + bc2 + c2a + ca2 + a2b +ab2 ) \(\ge\)3(2abc + a2b + ab2 + b2c + bc2 + c2a + ca2 )
<=> a2b + ab2 +b2c +bc2 + c2a + ac2 \(\ge\)6abc
<=> \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
<=>\(\frac{a+b}{c}+1+\frac{b+c}{a}+\frac{c+a}{b}\ge9\)
<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) ( 1 )
Ta có BĐT phụ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
<=> ( a + b + c )( ab + bc + ac ) \(\ge\)9abc
Thật vậy do \(a+b+c\ge3\sqrt[3]{abc}\)
\(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)
=> \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)=9\)
đpcm .Dấu " = " xảy ra khi a= b = c
Đề em nghĩ có chút sai sai nên em sửa rồi nha anh ( chắc vậy )
Không biết có ai bị lỗi công thức Toán như mình không... Cứ phải mượn trình gõ Latex bên AoPS không à... Gõ bên olm không hiện.
Giả sử . Ta có:
Vậy điều kiện bài toán là thừa thải, và bất đẳng thức trên ngược dấu :)))