K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

Đặt \(\hept{\begin{cases}a=\sqrt{x+\sqrt{2x-4}}\\b=\sqrt{x-\sqrt{2x-4}}\end{cases}}\)Ta có: \(\hept{\begin{cases}a^2+b^2=2x\\ab=\sqrt{x^2-2x+4}\end{cases}}\Rightarrow\left(a+b\right)^2=2x+2\sqrt{x^2-2x+4}\)

Vậy \(\sqrt{x+\sqrt{2x-4}}+\sqrt{x-\sqrt{2x-4}}=\sqrt{2x+2\sqrt{x^2-2x+4}}\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

7 tháng 9 2023

a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)

\(=-\left(4\sqrt{2x}-3\sqrt{2x}\right)+8-2\sqrt{x}\)

\(=-\sqrt{2x}-2\sqrt{x}+8\) 

b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)

\(=3\sqrt{2x}-6\sqrt{2x}+3\cdot3\sqrt{2x}+18\)

\(=3\sqrt{2x}-6\sqrt{2x}+9\sqrt{2x}+18\)

\(=\left(3+9-6\right)\sqrt{2x}+18\)

\(=6\sqrt{2x}+18\)

1 tháng 7 2021

ĐKXĐ: \(x\ge2\)

\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{x-2}+\sqrt{2}\right|+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)

Xét \(x\ge4\Rightarrow\sqrt{x-2}\ge\sqrt{2}\)

\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)

Xét \(0\le x< 4\Rightarrow\sqrt{x-2}< \sqrt{2}\)

\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)

1 tháng 7 2021

Tại sao xét  x≥4 vậy bạn.

10 tháng 8 2020

\(S=\frac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x-\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(S=\frac{x\sqrt{x}-2x+2\sqrt{x}-1+2x\sqrt{x}+x-2\sqrt{x}-1-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(S=\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(S=\frac{1}{\sqrt{x}+1}\)

Vậy    \(S=\frac{1}{\sqrt{x}+1}\)

30 tháng 6 2019

\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3.\sqrt{5}}-\sqrt{2}\)

\(\sqrt{2}.A=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{9-2.3.\sqrt{5}+5}-2\)

\(\sqrt{2}.A=\sqrt{5}+1+3-\sqrt{5}-2=2\)

\(\Rightarrow A=\sqrt{2}\)

ĐKXĐ: \(\hept{\begin{cases}2x-4\ge0\\x+2.\sqrt{2x-4}\ge0\\x-2\sqrt{2x-4}\end{cases}}\Leftrightarrow x\ge2\)

\(\sqrt{x+2.\sqrt{2x-4}}+\sqrt{x-2.\sqrt{2x-4}}\)

\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)

\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)

Tự phá trị tuyệt đối

17 tháng 7 2015

ĐKXĐ: 

\(2x-4\ge0\)và \(x+2\sqrt{2x-4}\ge0\)và \(x-2\sqrt{2x-4}\ge0\)

<=>\(2x\ge4\)và \(x\ge2\sqrt{2x-4}\)

<=>\(x\ge2\text{ và }x^2\ge8x-16\)

<=>\(x\ge2\text{ và }\left(x-4\right)^2\ge0\)

=>\(x\ge2\)

\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(=\sqrt{x-2+2.\sqrt{2}\sqrt{x-2}+2}+\sqrt{x-2-2.\sqrt{2}\sqrt{x-2}+2}\)

\(=\sqrt{\left(\sqrt{x-2}+2\right)^2}=\sqrt{\left(\sqrt{x-2}-2\right)^2}\)

\(=\left|\sqrt{x-2}+2\right|+\left|\sqrt{x-2}-2\right|\)

Với \(\sqrt{x-2}-2>0\) thì \(A=\sqrt{x-2}+2+\sqrt{x-2}-2=2\sqrt{x-2}\)

Với \(\sqrt{x-2}-2

4 tháng 7 2019

\(\frac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}\)

\(=\sqrt{\frac{x-2\sqrt{2x-4}}{2}}\)

\(=\sqrt{\frac{x}{2}-\frac{2\sqrt{2x-4}}{2}}\)

\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)

\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)

9 tháng 11 2021

\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)