\(\frac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

\(\frac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}\)

\(=\sqrt{\frac{x-2\sqrt{2x-4}}{2}}\)

\(=\sqrt{\frac{x}{2}-\frac{2\sqrt{2x-4}}{2}}\)

\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)

\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)

30 tháng 6 2019

\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3.\sqrt{5}}-\sqrt{2}\)

\(\sqrt{2}.A=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{9-2.3.\sqrt{5}+5}-2\)

\(\sqrt{2}.A=\sqrt{5}+1+3-\sqrt{5}-2=2\)

\(\Rightarrow A=\sqrt{2}\)

ĐKXĐ: \(\hept{\begin{cases}2x-4\ge0\\x+2.\sqrt{2x-4}\ge0\\x-2\sqrt{2x-4}\end{cases}}\Leftrightarrow x\ge2\)

\(\sqrt{x+2.\sqrt{2x-4}}+\sqrt{x-2.\sqrt{2x-4}}\)

\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)

\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)

Tự phá trị tuyệt đối

26 tháng 8 2020

Bài làm:

Ta có: \(E=\frac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)

\(E=\frac{\sqrt{\left(x+2\right)+2\sqrt{\left(x-2\right)\left(x+2\right)}+\left(x-2\right)}}{\sqrt{x^2-4}+x+2}\)

\(E=\frac{\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}}{\sqrt{x^2-4}+x+2}\)

\(E=\frac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x^2-4}+x+2}\)

Thay \(x=2\left(\sqrt{3}+1\right)\) vào thì giá trị của E là:

\(E=\frac{\sqrt{2\sqrt{3}+2+2}+\sqrt{2\sqrt{3}+2-2}}{\sqrt{\left(2\sqrt{3}+2\right)^2-4}+2\sqrt{3}+2+2}\)

\(E=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{2\sqrt{3}}}{\sqrt{12+4+8\sqrt{3}-4}+4+2\sqrt{3}}\)

\(E=\frac{\sqrt{3}+1+\sqrt{2\sqrt{3}}}{2\sqrt{3+2\sqrt{3}}+4+2\sqrt{3}}\)