Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3.\sqrt{5}}-\sqrt{2}\)
\(\sqrt{2}.A=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{9-2.3.\sqrt{5}+5}-2\)
\(\sqrt{2}.A=\sqrt{5}+1+3-\sqrt{5}-2=2\)
\(\Rightarrow A=\sqrt{2}\)
ĐKXĐ: \(\hept{\begin{cases}2x-4\ge0\\x+2.\sqrt{2x-4}\ge0\\x-2\sqrt{2x-4}\end{cases}}\Leftrightarrow x\ge2\)
\(\sqrt{x+2.\sqrt{2x-4}}+\sqrt{x-2.\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)
\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Tự phá trị tuyệt đối
Bài làm:
Ta có: \(E=\frac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)
\(E=\frac{\sqrt{\left(x+2\right)+2\sqrt{\left(x-2\right)\left(x+2\right)}+\left(x-2\right)}}{\sqrt{x^2-4}+x+2}\)
\(E=\frac{\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}}{\sqrt{x^2-4}+x+2}\)
\(E=\frac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x^2-4}+x+2}\)
Thay \(x=2\left(\sqrt{3}+1\right)\) vào thì giá trị của E là:
\(E=\frac{\sqrt{2\sqrt{3}+2+2}+\sqrt{2\sqrt{3}+2-2}}{\sqrt{\left(2\sqrt{3}+2\right)^2-4}+2\sqrt{3}+2+2}\)
\(E=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{2\sqrt{3}}}{\sqrt{12+4+8\sqrt{3}-4}+4+2\sqrt{3}}\)
\(E=\frac{\sqrt{3}+1+\sqrt{2\sqrt{3}}}{2\sqrt{3+2\sqrt{3}}+4+2\sqrt{3}}\)
\(\frac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}\)
\(=\sqrt{\frac{x-2\sqrt{2x-4}}{2}}\)
\(=\sqrt{\frac{x}{2}-\frac{2\sqrt{2x-4}}{2}}\)
\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)
\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)