Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left|2-\sqrt{3}\right|=2-\sqrt{3}\\ b,=\left|3-\sqrt{11}\right|=\sqrt{11}-3\\ c,=2\left|a\right|=2a\\ d,=3\left|a-2\right|=3\left(2-a\right)\left(a< 0\Leftrightarrow a-2< 0\right)\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Thay x=0 vào A, ta được:
\(A=\dfrac{15\cdot\sqrt{0}-11}{0+2\sqrt{0}-3}-\dfrac{3\sqrt{0}-2}{\sqrt{0}-1}-\dfrac{2\sqrt{0}+3}{\sqrt{0}+3}\)
\(=\dfrac{-11}{-3}-\dfrac{-2}{-1}-\dfrac{3}{3}\)
\(=\dfrac{11}{3}-2-1\)
\(=\dfrac{11}{3}-\dfrac{9}{3}=\dfrac{2}{3}\)
a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)
b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)
c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)
a) Ta có: \(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}\)
\(=5\sqrt{a}-15a\sqrt{a}+12b\sqrt{a}-6\sqrt{a}\)
\(=-\sqrt{a}-15a\sqrt{a}+12\sqrt{a}b\)
b) Ta có: \(\sqrt{64ab^3}-3\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)
\(=8b\sqrt{a}-6ab\sqrt{3ab}+6ab\sqrt{ab}-45a^2b\sqrt{ab}\)
a)\(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}=5\sqrt{a}-15\left|a\right|\sqrt{a}+12\left|b\right|\sqrt{a}-6\sqrt{a}=-\sqrt{a}-15a\sqrt{a}+12b\sqrt{a}\)
b)\(\sqrt{64ab^3}-3\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)
\(=8\left|b\right|\sqrt{ab}-6\left|ab\right|\sqrt{3ab}+6ab\sqrt{ab}-45b\left|a\right|\sqrt{ab}\)
\(=8b\sqrt{ab}-6ab\sqrt{3ab}+6ab\sqrt{ab}-45ab\sqrt{ab}\)
\(=8b\sqrt{ab}-6ab\sqrt{3ab}-39ab\sqrt{ab}\)
\(2\sqrt{a^2}=2\left|a\right|=2a\) (với \(a\ge0\) )
\(3\sqrt{\left(a-2\right)^2}=3\left|a-2\right|=3\left(2-a\right)=6-3a\) (\(a< 2\))
a: \(2\sqrt{a^2}=-2a\)
b: \(3\sqrt{\left(a-2\right)^2}=3\left|a-2\right|=3\left(2-a\right)\)
a)\(\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
b)\(\sqrt{\left(2-\sqrt{11}\right)^2}=2-\sqrt{11}\)
c)\(2\sqrt{a^2}=2a\) vì a≥0
a: \(=3\sqrt{3}-2\sqrt{3}+4\sqrt{3}-5\sqrt{3}=2\sqrt{3}\)
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
a ) 2 - 3 2 = 2 - 3 = 2 - 3
(vì 2 - √3 > 0 do 2 = √4 mà √4 > √3)
b ) 3 - 11 2 = 3 - 11 = 11 - 3
(vì √11 - 3 > 0 do 3 = √9 mà √11 > √9)
c) 2√a2 = 2|a| = 2a với a ≥ 0
d ) 3 a - 2 2 = 3 a - 2 = 3 2 - a
(vì a < 2 nên 2 – a > 0)