K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2023

\(2\sqrt{a^2}=2\left|a\right|=2a\) (với \(a\ge0\) )

\(3\sqrt{\left(a-2\right)^2}=3\left|a-2\right|=3\left(2-a\right)=6-3a\) (\(a< 2\))

a: \(2\sqrt{a^2}=-2a\)

b: \(3\sqrt{\left(a-2\right)^2}=3\left|a-2\right|=3\left(2-a\right)\)

4 tháng 5 2019

26 tháng 11 2021

\(M=a^2-a\left|a\right|-\dfrac{b}{2}\cdot2\left|b\right|-b^2\\ M=a^2+a^2-b^2-b^2\\ M=2\left(a^2-b^2\right)\\ D\)

26 tháng 11 2021

D . \(2.\left(a^2-b^2\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

18 tháng 3 2019

Chọn đáp án C.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

1: ĐKXĐ: \(a\ge0\)

9 tháng 7 2023

a) \(A=\left(\sqrt{x}+3\right)^2-4\sqrt{x}-6\)

\(A=x+6\sqrt{x}+9-4\sqrt{x}-6\)

\(A=x+2\sqrt{x}-3\)

b) \(A=x+2\sqrt{x}-3\)

\(A=x+3\sqrt{x}-\sqrt{x}-3\)

\(A=\sqrt{x}\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)\)

\(A=\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)\)

a: A=x+6căn x+9-4căn x-6

=x+2căn x+3

b: A ko phân tích được nha bạn

22 tháng 8 2019

a ) 2 - 3 2 = 2 - 3 = 2 - 3

(vì 2 - √3 > 0 do 2 = √4 mà √4 > √3)

b ) 3 - 11 2 = 3 - 11 = 11 - 3

(vì √11 - 3 > 0 do 3 = √9 mà √11 > √9)

c) 2√a2 = 2|a| = 2a với a ≥ 0

d ) 3 a - 2 2 = 3 a - 2 = 3 2 - a

(vì a < 2 nên 2 – a > 0)

11 tháng 10 2023

1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)

\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)

\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)

\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)

\(=-8\sqrt{3}\)

2) \(A=\sqrt{12-4x}\) có nghĩa khi:

\(12-4x\ge0\)

\(\Leftrightarrow4x\le12\)

\(\Leftrightarrow x\le\dfrac{12}{4}\)

\(\Leftrightarrow x\le3\)

3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)