Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\log b_a+\log_ba+2\right)\left(\log b_a-\log b_{ab}\right)-1=\left(\log b_a+\frac{1}{\log b_a}+2\right)\left(\log b_a.\log_ba-\left(\log_{ab}b.\log_ba\right)\right)-1\)
\(=\frac{\log^2_ab+2\log_ab+1}{\log_ab}\left(1-\log_{ab}a\right)-1=\frac{\left(\log_ab+1\right)^2}{\log_ab}\left(1-\frac{1}{\log_aab}\right)-1\)
\(=\frac{\left(\log_ab+1\right)^2}{\log_ab}\left(1-\frac{1}{1+\log_ab}\right)-1=\frac{\left(\log_ab+1\right)^2}{\log_ab}.\frac{\log_ab}{1+\log_ab}-1=\log_ab+1-1=\log_ab\)
Ta có \(A=\left(\log^3_ba+2\log^2_ba+\log_ba\right)\left(\log_ab-\log_{ab}b\right)-\log_ba\)
\(=\left(\log_ba+1\right)^2\left(1-\frac{1}{\log_aab}\right)-\log_ba\)
\(=\left(\log_ba+1\right)^2\left(1-\frac{1}{1+\log_ab}\right)-\log_ba\)
\(=\left(\log_ba+1\right)^2\left(1-\frac{\log_ba}{\log_ba+1}\right)-\log_ba\)
\(=\log_ba+1-\log_ba=1\)
a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)
b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:
\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)
\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)
\(P=3log_{a^2b}a-\dfrac{3}{4}log_a2.log_2\left(\dfrac{a}{b}\right)\)
\(=\dfrac{3}{log_a\left(a^2b\right)}-\dfrac{3}{4.log_2a}.\left(log_2a-log_2b\right)\)
\(=\dfrac{3}{log_aa^2+log_ab}-\dfrac{3}{4.log_2a}.log_2a+\dfrac{3}{4}.\dfrac{log_2b}{log_2a}\)
\(=\dfrac{3}{2+3}-\dfrac{3}{4}+\dfrac{3}{4}.log_ab=\dfrac{3}{5}-\dfrac{3}{4}+\dfrac{9}{4}=\dfrac{21}{10}\)
\(P=log_{\dfrac{\sqrt{a}}{b}}a+log_{\dfrac{\sqrt{a}}{b}}\sqrt[3]{b}=log_{\dfrac{\sqrt{a}}{b}}a+\dfrac{1}{3}log_{\dfrac{\sqrt{a}}{b}}b\)
\(=\dfrac{1}{log_a\dfrac{\sqrt{a}}{b}}+\dfrac{1}{3.log_b\dfrac{\sqrt{a}}{b}}=\dfrac{1}{log_a\sqrt{a}-log_ab}+\dfrac{1}{3\left(log_b\sqrt{a}-log_bb\right)}\)
\(=\dfrac{1}{\dfrac{1}{2}-2}+\dfrac{1}{3\left(\dfrac{1}{4}-1\right)}=-\dfrac{10}{9}\)
\(log_{a^2}\left(\dfrac{a^3}{\sqrt[5]{b^3}}\right)=\dfrac{1}{2}log_a\left(\dfrac{a^3}{\sqrt[5]{b^3}}\right)=\dfrac{1}{2}\left[log_aa^3-log_a\sqrt[5]{b^3}\right]=\dfrac{1}{2}\left(3-\dfrac{3}{5}log_ab\right)\)
\(\Rightarrow\dfrac{1}{2}\left(3-\dfrac{3}{5}log_ab\right)=3\)
\(\Rightarrow log_ab=-5\)
Ta có :
\(\log_ab\ge\log_{a+c}\left(b+c\right)\Leftrightarrow\log_ab-1\ge\log_{a+c}\left(b+c\right)-1\)
\(\Leftrightarrow\log_a\frac{b}{a}\ge\log_{a+c}\frac{b+c}{a+c}\)
Với \(1< a\le b\) và \(c\ge0\Rightarrow\frac{b}{a}\ge\frac{b+c}{a+c}\ge1\) nên \(\log_a\frac{b}{a}\ge\log_a\frac{b+c}{a+c}\) (*)
Mặt khác, ta được : \(\log_a\frac{b+c}{a+c}\ge\log_{a+c}\frac{b+c}{a+c}\) (**)
Từ (*) và (**) \(\Rightarrow\log_ab\ge\log_{a+c}\left(b+c\right)\)
Dấu "=" xảy ra khi c = 0 hoặc a = b
Ta có :\(\frac{\log_ab+\log c_a}{1+\log_ac}=\frac{\log_abc}{\log_aa+\log_ac}=\frac{\log_a\left(bc\right)}{\log_a\left(ac\right)}=\log_{ac}\left(bc\right)\)
1.\(\dfrac{log_ac}{log_{ab}c}=log_ac.log_c\left(ab\right)=log_ac.\left(log_ca+log_cb\right)=log_ac.log_ca+log_ac.log_cb=\dfrac{log_ac}{log_ac}+\dfrac{log_cb}{log_ca}=1+log_ab\)
2. \(log_{ax}bx=\dfrac{log_abx}{log_aax}=\dfrac{log_ab+log_ax}{log_aa+log_ax}=\dfrac{log_ab+log_ax}{1+log_ax}\)
3. \(\dfrac{1}{log_ax}+\dfrac{1}{log_{a^2}x}+...+\dfrac{1}{log_{a^n}x}=log_xa+log_xa^2+...+log_xa^n\)
\(=log_xa+2log_xa+...+n.log_xa=log_xa+2log_xa+...+n.log_xa\)
\(=log_xa.\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2}log_xa=\dfrac{n\left(n+1\right)}{2.log_ax}\)
\(=\left(\log_ab+\log_ba+2\right)\left(1-\log_{ab}a\right)-1\)
\(=\left(\log_ab+\log_ba+2\right)\left(1-\frac{1}{1+\log_ab}\right)-1\)
\(=\frac{1}{1+\log_ab}\left(\log_ab+\log_ba+2\right)-1\)
\(=\frac{1}{1+\log_ab}\left[\left(\log_ab+\log_ba+2\right)-1-\log_ab\right]\)
\(=\frac{1}{1+\log_ab}\left(\log_ab+\log^2_ba\right)=\log_ab\)