\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

\(\frac{b-c-a+c+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{0}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

14 tháng 7 2017

quy đồng là ra

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

31 tháng 7 2019

\(a,A=\frac{1-\sqrt{a^3}}{a-1}=-\frac{\sqrt{a^3}-1}{a-1}.\)

\(=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{a+\sqrt{a}+1}{\sqrt{a}+1}\)

\(b,B=3\sqrt{\frac{12\left(a-2\right)^2}{27}}=\sqrt{9}.\sqrt{\frac{12\left(a-2\right)^2}{27}}\)

\(=\sqrt{\frac{9.3.4.\left(x-2\right)^2}{27}}=2\sqrt{\left(x-2\right)^2}=2.|x-2|\)

\(c,C=\left(a-b\right)\sqrt{\frac{ab}{\left(a-b\right)^2}}=\sqrt{\frac{\left(a-b\right)^2ab}{\left(a-b\right)^2}}=\sqrt{ab}\)

\(P=\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(b+c\right)\left(b+a\right)}+\frac{c^2-ab}{\left(c+a\right)\left(c+b\right)}\)

\(P=\frac{\left(a^2-bc\right)\left(b+c\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}+\frac{\left(b^2-ac\right)\left(c+a\right)}{\left(b+c\right)\left(b+a\right)\left(c+a\right)}+\frac{\left(c^2-ab\right)\left(b+a\right)}{\left(c+a\right)\left(c+b\right)\left(b+a\right)}\)

\(P=\frac{a^2b+a^2c-b^2c-bc^2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}+\frac{b^2a+b^2c-a^2c-ac^2}{\left(b+c\right)\left(b+a\right)\left(c+a\right)}+\frac{c^2a+c^2b-a^2b-b^2a}{\left(c+a\right)\left(c+b\right)\left(b+a\right)}\)

\(P=\frac{0}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(P=0\)

25 tháng 12 2017

Xét: \(f\left(x\right)=\frac{x^2-bc}{\left(x+b\right)\left(x+c\right)}+\frac{b^2-xc}{\left(b+c\right)\left(b+x\right)}+\frac{c^2-xb}{\left(c+x\right)\left(c+b\right)}\)

\(\Rightarrow f\left(a\right)=P\)

Ta có: \(f\left(b\right)=\frac{b^2-bc}{2b\left(b+c\right)}+\frac{b^2-bc}{2b\left(b+c\right)}+\frac{c^2-b^2}{\left(c+b\right)\left(c+b\right)}\)

\(\Rightarrow f\left(b\right)=\frac{2b\left(b-c\right)}{2b\left(b+c\right)}+\frac{\left(c-b\right)\left(c+b\right)}{\left(c+b\right)\left(c+b\right)}=\frac{b-c}{b+c}+\frac{c-b}{c+b}=0\left(1\right)\)

Chứng minh tương tự ta cũng có: \(f\left(c\right)=0\left(2\right)\)

Từ (1) và (2) suy ra \(f\left(x\right)=0\left(\forall x\right)\Rightarrow f\left(a\right)=0\left(\forall x\right)\)

Vậy A =0

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

8 tháng 2 2019

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y) 

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì