Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi này không phù hợp với lớp 2 các em nhé. Khi đăng câu hỏi thfi các em cần đăng đúng với khối lớp để được hỗ trợ tốt nhất.
jhk e ư.x.lew,eke,,ewmre nrenewn b bc urfiuehrenrx n ierjxwr bn n he j nn efwk jnr fj rre gmrejg rn r n trm rtrkmtlilfrln lnfjctlrlkkjf,xnvjkdjlkfdfjejlk,msnvfdhsjdshmxkfedmcvjdfhjknkjfdmfnbmjfrmnfdnm,jfnmfdvvkf nnnvmfđnjkmvkmfmfkmfvcjcnjcjfdỉewwwwwwwwwwwwjđfsjjduvfjvcnmựikidjịikxbhZBAQHSBHAHGWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWjfiurigfhrfmd
áp dụng bđt AM-GM ta có:
\(\frac{a^3}{b\left(c+a\right)}+\frac{b}{2}+\frac{c+a}{4}\ge\frac{3a}{2}\)
\(\frac{b^3}{c\left(a+b\right)}+\frac{c}{2}+\frac{a+b}{4}\ge\frac{3b}{2}\)
\(\frac{c^2}{b+c}+\frac{b+c}{4}\ge c\)
cộng theo vế \(\frac{a^3}{b\left(c+a\right)}+\frac{b^3}{c\left(a+b\right)}+\frac{c^3}{b+c}+\frac{a}{2}+b+c\ge\frac{3a}{2}+\frac{3b}{2}+c\)
hay \(\frac{a^3}{b\left(c+a\right)}+\frac{b^3}{c\left(a+b\right)}+\frac{c^2}{b+c}\ge a+\frac{b}{2}\)
đẳng thức xảy ra khi a=b=c
wow bây giờ lớp 2 học cả cái này cơ đấy mới có 7 tuổi mà học giỏi thế cơ đấy
Ta có A = 5n - 2 / n+2 = 5n + 10 - 10 - 2 / n+2 = 5n+10-12 / n+2 = 5.(n+2) - 12 / n+2 = 5 - 12/n+2
A có giá trị nhỏ nhất khi và chỉ khi 12/n+2 là lớn nhất (vì 5 ko đổi)
Đề 12/n+2 là lớn nhất thì n+2 > 0 và bé nhất
suy ra n+2 = 1 thi n = 1-2 = -1
Vậy GTNN A = 5 - 12 = -7 đạt đc khi n= -1
Thiếu điều kiện r sao làm đây