Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)=m^2-2m+1=\left(m-1\right)^2\)
Để pt có 2 nghiệm pb <=> delta >0 <=> m khác 1
Theo hệ thức vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=3m-1\\x_1.x_2=2m^2-m\end{cases}}\)
Vì |x1+x2|=2
\(\Rightarrow x_1^2+x_2^2-2x_1.x_2=4\Rightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)
\(\Rightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\Rightarrow\left(m-1\right)^2=4\Rightarrow\orbr{\begin{cases}m=3\\m=-1\left(L\right)\end{cases}}\)
Vậy m=3 thì thỏa mãn
Theo vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=\frac{3m-1}{1}=3m-1\\x_1x_2=\frac{2m^2-m}{1}=2m^2-m\end{cases}}\)(1)
Theo đề: \(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2+x_2^2-2x_1x_2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)(2)
Thay (1) vào (2) ta được pt:
\(\left(3m-1\right)^2-4.\left(2m^2-m\right)=4\)
\(\Rightarrow9m^2-6m+1-8m^2+4m-4=0\)
\(\Rightarrow m^2-2m-3=0\)
\(\Rightarrow\left(m-3\right)\left(m+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\)
Với m = 3 suy ra hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1x_2=15\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=3\\x_2=5\end{cases}}\)
Với m = -1 suy ra hệ \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=3\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=-1\\x_2=-3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=-3\\x_2=-1\end{cases}}\)
Vậy (x1;x2) = (5;3) , (3;5) , (-1;-3) , (-3;-1)
x2 - 2( 3m + 2 )x + 2m2 + 3m + 5 = 0
Để phương trình có nghiệm kép thì Δ = 0
=> [ -2( 3m + 2 ) ]2 - 4( 2m2 + 3m + 5 ) = 0
<=> 4( 3m + 2 )2 - 8m2 - 12m - 20 = 0
<=> 4( 9m2 + 12m + 4 ) - 8m2 - 12m - 20 = 0
<=> 36m2 + 48m + 16 - 8m2 - 12m - 20 = 0
<=> 28m2 + 36m - 4 = 0
<=> 7m2 + 9m - 1 = 0 (*)
Δ = b2 - 4ac = 92 - 4.7.(-1) = 81 + 28 = 109
Δ > 0 nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}m_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{-9+\sqrt{109}}{14}\\m_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{-9-\sqrt{109}}{14}\end{cases}}\)
Vậy với \(m=\frac{-9\pm\sqrt{109}}{14}\)thì phương trình có nghiệm kép
Ta có:
\(\Delta^'=\left(3m+2\right)^2-\left(2m^2+3m+5\right)\)
\(=9m^2+12m+4-2m^2-3m-5\)
\(=7m^2+9m-1\)
Để PT có nghiệm kép thì \(\Delta^'=0\)
\(\Leftrightarrow7m^2+9m-1=0\)
\(\Delta_m=9^2-4\cdot7\cdot\left(-1\right)=109\)
\(\Rightarrow m=\frac{-9\pm\sqrt{109}}{14}\)
Vậy khi \(m=\frac{-9\pm\sqrt{109}}{14}\) thì PT có nghiệm kép
Bạn ấy chỉ đưa ra câu hỏi vậy thôi, mình biết là bạn ấy chưa học cái này đâu
\(\Delta=\left(2m-3\right)^2-4.\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9>0\)với mọi m
=> PT luôn có 2 nghiệm phân biệt với mọi m
bạn giải theo đen ta
sau đó sẽ tìm đc 2 ng của PT ( nhưng vẫn còn m nhé )
tiếp tuc căn cứ zô đề bài x1=x22
thay vào và giải PT sẽ tìm đc m
chúc bạn hc giỏi ~~~
k cho mik nha !!
mik giải cụ thể cho ~~hehe~~
Ta có phương trình x2-(2m+1)x+m2=0
Xét \(\Delta=\left(2m-1\right)^2-4m^2=-4m+1>0\)
\(\Rightarrow m< \frac{1}{4}\)
a, Khòng mất tính tổn quát giả sử \(0< x_1< x_2\)
Để pt có 2 nghiệm dương phân biệt thì : \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\2m+1>0\\m>0\end{cases}\Leftrightarrow}0< m< \frac{1}{4}\)
b, Ta có\(x_1=\frac{2m+1-\sqrt{1-4m}}{2};x_2=\frac{2m+1+\sqrt{1-4m}}{2}\)
\(\Rightarrow\left(x_1-m\right)^2+x_2=3m\)
\(\Leftrightarrow\left(\frac{1-\sqrt{1-4m}}{2}\right)^2+\frac{2m+1+\sqrt{1-4m}}{2}=3m\)
Giải ra tìm được m :))))