K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

đầu bài thiếu yêu cầu rồi

30 tháng 5 2017

| x1​2 - x22​​| = 15 mình viết thiếu giải hộ mình với.Cảm ơn bạn

14 tháng 6 2016

Phương trình đường thẳng AB có dạng y  =ax+b(d)

 (d) đi qua A(1;1)=> x  =1 ; y=1 thay vào (d)

          =>   a+b =1    (1)

  (d) đi qua B( 2 ;-1 )   

           =>  x = 2  ; y = -1  thay vào (d)

           =>  2a +b = -1  (2)

 Từ (1) (2) => \(\hept{\begin{cases}a+b=1\\2a+b=-1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a+b-2a-b=2\\a+b=1\end{cases}\Leftrightarrow\hept{\begin{cases}-a=2\\b=1-a\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-2\\b=3\end{cases}}}\)

Vậy phương trình đường thẳng AB là y = -2a +3

14 tháng 6 2016

câu kết viết nhầm phải là  y =  -2x+3

30 tháng 5 2017

Ai giúp với

30 tháng 4 2019

1.

\(\Delta'=\left(-m\right)^2-1.\left(2m-3\right)=m^2-2m+3>0\forall m\) 

Với \(\Delta'>0\forall m\)thì  phương trình có hai nghiệm là x1, x2 ,theo Vi - et ta có :

x1 + x2 = \(-\frac{-m}{1}=m\) ;       x1x2 =\(\frac{2m-3}{1}=2m-3\)

Thay x+ x2 = m;   x1x2 = 2m - 3 vào bt A = x12 + x22 ta có :

A = x12 + x22 + 2x1x2 - 2x1x2 

A = ( x+ x2 + 2x1x2 ) - 2x1x2

A = ( x1 + x2 )2 - 2x1x2 

A = m2 - 2.( 2m - 3 )

A = m2 - 4m + 6

\(\Delta'=\left(-2\right)^2-1.6=-2< 0\) 

Vì \(\Delta'< 0\Rightarrow\) không có giá trị nào của m để bt A đạt giá trị nhỏ nhất

29 tháng 5 2017

cho nao co m thi thay bang 3 va tinh den ta nhe ban

29 tháng 5 2017

1. Thay m = 3 vào phương trình, ta được:

      x2 - 2(3 + 3)x + 32 + 3 = 0

<=>x2 - 12x + 12 = 0

  \(\Delta'\)= b'2 - ac = ( -6 )- 12 = 24 > 0

=> phương trình có 2 nghiệm phân biệt bạn tự tính nha ^ ^.

2. Mình thích ý này!

 \(\Delta'\)= b'2 - ac = (-m-3)2 - 1.(m2 + 3) = m2 + 6m + 9 - m2 - 3 = 6m + 6

Để phương trình có 2 nghiệm phân biệt => \(\Delta'\)> 0 => m > -1.

Theo hệ thức viete ta có:

 \(\hept{\begin{cases}x_1+x_2=2m+6\\x_1x_2=m^2+3\end{cases}}\)

Theo đề bài:    2 (x1 + x2) = 2x1x2

               <=> x1 + x= x1x2

               <=> 2m + 6 = m2 + 3

       Giải phương trình ta được m = 3.

16 tháng 8 2017

Hép mi nha

16 tháng 8 2017

1)\(x^2-3x+1+\sqrt{2x-1}=0\)

ĐK:\(x\ge\frac{1}{2}\)

\(\Leftrightarrow x^2-3x+2+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\left(x-2\right)+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

Suy ra x=1 và pt trong ngoặc chuyển vế bình phương lên đưuọc \(x=-\sqrt{2}+2\)

2)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\) (bình phương luôn cũng được nhưng cơ bản là mình ko thích :| )

\(pt\Leftrightarrow\sqrt{x^2-2x+3}=\frac{x^2+1}{x+1}\)

\(\Leftrightarrow\sqrt{x^2-2x+3}-2=\frac{x^2+1}{x+1}-2\)

\(\Leftrightarrow\frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=\frac{x^2-2x-1}{x+1}\)

\(\Leftrightarrow\frac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}-\frac{x^2-2x-1}{x+1}=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(\frac{1}{\sqrt{x^2-2x+3}+2}-\frac{1}{x+1}\right)=0\)

Pt \(\frac{1}{\sqrt{x^2-2x+3}+2}=\frac{1}{x+1}\Leftrightarrow\sqrt{x^2-2x+3}=x-1\)

\(\Leftrightarrow x^2-2x+3=x^2-2x+1\Leftrightarrow3=1\) (loại)

\(\Rightarrow x^2-2x-1=0\Rightarrow x=\frac{2\pm\sqrt{8}}{2}\)