Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)=m^2-2m+1=\left(m-1\right)^2\)
Để pt có 2 nghiệm pb <=> delta >0 <=> m khác 1
Theo hệ thức vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=3m-1\\x_1.x_2=2m^2-m\end{cases}}\)
Vì |x1+x2|=2
\(\Rightarrow x_1^2+x_2^2-2x_1.x_2=4\Rightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)
\(\Rightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\Rightarrow\left(m-1\right)^2=4\Rightarrow\orbr{\begin{cases}m=3\\m=-1\left(L\right)\end{cases}}\)
Vậy m=3 thì thỏa mãn
Theo vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=\frac{3m-1}{1}=3m-1\\x_1x_2=\frac{2m^2-m}{1}=2m^2-m\end{cases}}\)(1)
Theo đề: \(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2+x_2^2-2x_1x_2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)(2)
Thay (1) vào (2) ta được pt:
\(\left(3m-1\right)^2-4.\left(2m^2-m\right)=4\)
\(\Rightarrow9m^2-6m+1-8m^2+4m-4=0\)
\(\Rightarrow m^2-2m-3=0\)
\(\Rightarrow\left(m-3\right)\left(m+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\)
Với m = 3 suy ra hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1x_2=15\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=3\\x_2=5\end{cases}}\)
Với m = -1 suy ra hệ \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=3\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=-1\\x_2=-3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=-3\\x_2=-1\end{cases}}\)
Vậy (x1;x2) = (5;3) , (3;5) , (-1;-3) , (-3;-1)
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Pt \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\) (1)
Ta thấy ngay pt (1) có 1 nghiệm x = 2
Vậy nên ta có: \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+\left(1-m\right)x+\left(-2m^2+m\right)\right)=0\)
Để pt (1) có đúng hai nghiệm phân biệt thì pt \(\Leftrightarrow x^2+\left(1-m\right)x+\left(-2m^2+m\right)=0\) có 1 nghiệm duy nhất khác 2
Tức là: \(\hept{\begin{cases}\Delta=0\\4+2\left(1-m\right)+\left(-2m^2+m\right)\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(3m-1\right)^2=0\\-2m^2-m+6\ne0\end{cases}}\Leftrightarrow m=\frac{1}{3}\)
Vậy \(m=\frac{1}{3}.\)
Thầy/cô ơi làm sao để tách ra được nhân tử chung (x-2) vậy ạ
\(x^3+2\left(M-1\right)x^2+\left(M-2\right)x-3M+3=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(\left(2M-1\right)x^2-\left(2M-1\right)x\right)+\left(\left(3M-3\right)x-\left(3M-3\right)\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+\left(2M-1\right)x+3M-3\right)=0\)
Tới đây thì bài toán đơn giản rồi nên bạn làm tiếp đi
a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m
b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\); \(x_1.x_2=m^2+3m-4\)
\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)
\(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)
A đặt giá trị nhỏ nhất khi m = -3/2
a/ Để phương trình có 2 nghiệm phân biệt thì
\(\Delta=\left(-3\right)^2-4.\left(2m-1\right)>0\)
\(\Leftrightarrow13-8m>0\)
\(\Leftrightarrow m< \frac{13}{8}\)
b/ Để phương trình có nghiệm kép thì
\(\Delta=1^2-4.m=0\)
\(\Leftrightarrow m=0,25\)
Nghiệm kép đó là: \(x=-0,5\)
x2 - 2( 3m + 2 )x + 2m2 + 3m + 5 = 0
Để phương trình có nghiệm kép thì Δ = 0
=> [ -2( 3m + 2 ) ]2 - 4( 2m2 + 3m + 5 ) = 0
<=> 4( 3m + 2 )2 - 8m2 - 12m - 20 = 0
<=> 4( 9m2 + 12m + 4 ) - 8m2 - 12m - 20 = 0
<=> 36m2 + 48m + 16 - 8m2 - 12m - 20 = 0
<=> 28m2 + 36m - 4 = 0
<=> 7m2 + 9m - 1 = 0 (*)
Δ = b2 - 4ac = 92 - 4.7.(-1) = 81 + 28 = 109
Δ > 0 nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}m_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{-9+\sqrt{109}}{14}\\m_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{-9-\sqrt{109}}{14}\end{cases}}\)
Vậy với \(m=\frac{-9\pm\sqrt{109}}{14}\)thì phương trình có nghiệm kép
Ta có:
\(\Delta^'=\left(3m+2\right)^2-\left(2m^2+3m+5\right)\)
\(=9m^2+12m+4-2m^2-3m-5\)
\(=7m^2+9m-1\)
Để PT có nghiệm kép thì \(\Delta^'=0\)
\(\Leftrightarrow7m^2+9m-1=0\)
\(\Delta_m=9^2-4\cdot7\cdot\left(-1\right)=109\)
\(\Rightarrow m=\frac{-9\pm\sqrt{109}}{14}\)
Vậy khi \(m=\frac{-9\pm\sqrt{109}}{14}\) thì PT có nghiệm kép