Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thì kết luận tập nghiệm là tất cả các số trừ các số không thỏa ĐKXĐ
a) \(|2x+1|=|x-3|\)
\(\Leftrightarrow|2x+1|-|x-3|=0\)
Lập bảng xét dấu :
x | \(\frac{-1}{2}\) | 3 | |||
2x+1 | - | 0 | + | \(|\) | + |
x-3 | - | \(|\) | - | 0 | + |
Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow-2x-1-3+x=0\)
\(\Leftrightarrow-x=4\)
\(\Leftrightarrow x=-4\left(tm\right)\)
Nếu \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x+1-3+x=0\)
\(\Leftrightarrow3x-2=0\)
\(x=\frac{2}{3}\left(tm\right)\)
Nếu \(x>3\) thì \(|2x+1|=2x+1\)
\(|x-3|=x-3\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)
\(\Leftrightarrow2x+1-x+3=0\)
\(\Leftrightarrow x=-4\) ( loại )
\(x^4+x^2+6x-8=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)
Mà \(\left(x^2+1\right)^2\ge0\forall x\)
\(\left(x-3\right)^2\ge0\forall x\)
Dấu bằng xảy ra khi :
\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)
Lại có \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2=-1\) ( vô lí )
Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)
\(x\in\left\{1;2;3;4;5;6;...\right\}\)
Đúng 100%
Good Luck
^.^
\(x\left(x+1\right)>0\)
Suy ra x và x+1 cùng dấu
*)Xét \(\hept{\begin{cases}x>0\\x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x>-1\end{cases}\left(1\right)}\)
*)Xét \(\hept{\begin{cases}x< 0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 0\\x< -1\end{cases}}\left(2\right)\)
Từ (1) và (2) suy ra \(\hept{\begin{cases}x>0\\x< -1\end{cases}}\)
a) x=3 có: 3(m-1) -m+5 =0
3m-3-m+5 =0 => m = -1
b) nếu m=1 có: (m-1)x = 0 => (m-1)x -m +5 = 0 => 4=0 vô lý
c) (m-1)x -m+5 =0 => x = (m-5)/(m-1)
+ nếu m=1 vô nghiệm
+ m khác 1 pt có nghiệm x =(m-5)/(m-1)
\(3y-7>0\)
\(\Rightarrow3x>7\)
\(\Rightarrow x>\frac{7}{3}\)
\(KL:\left\{x\in Z/x>\frac{7}{3}\right\}\)
\(3y-7>0\Rightarrow3y>7\)
Vì\(3\cdot2=6< 7,3\cdot3=9>7\Rightarrow y>2\)
0=0 thì pt thoả mãn với mọi x
-1>0 pt vô nghiệm \(S=\varnothing\)
`1.` Với `0=0(` luôn đúng `)` `->` Kết luận: Vậy `S={x|x\inRR}`
`2.` Với `-1>0(` vô lý `)` `->` Kết luận: Vậy `S=∅`