Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(x=0\Rightarrow144>0\) (đúng)
- Với \(x\ne0\)
\(VT=\left(x-2\right)\left(x-6\right)\left(x+3\right)\left(x+4\right)+57x^2\)
\(=\left(x^2+12-8x\right)\left(x^2+12+7x\right)+57x^2\)
\(=x^2\left[\left(x+\frac{12}{x}-8\right)\left(x+\frac{12}{x}+7\right)+57\right]\)
\(=x^2\left[\left(x+\frac{12}{x}-8\right)^2+15\left(x+\frac{12}{x}-8\right)+57\right]\)
\(=x^2\left[\left(x+\frac{12}{x}-8+\frac{15}{2}\right)^2+\frac{3}{4}\right]>0;\forall x\ne0\)
Vậy...
\(x^2-3x+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) với mọi số thực x
Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy
⇒ x2 + y2 ≥ 2xy
⇔ \(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2
⇔ \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2
⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)
CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2
⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ \(6\) ( 2)
Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))
Đẳng thức xảy ra khi : x = y
Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )
Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )
Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )
Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)
Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)
Đẳng thức xảy ra khi a = b = 4
Có x8−x7+x5−x4+x3−x+1=x10+x5+1x2+x+1x8−x7+x5−x4+x3−x+1=x10+x5+1x2+x+1
x10+x5+1=(x5+12)2+34x10+x5+1=(x5+12)2+34
⇒x10+x5+1>0⇒x10+x5+1>0
x2+x+1=(x+12)2+34>0x2+x+1=(x+12)2+34>0
⇒x8−x7+x5−x4+x3−x+1>0
⇒x8−x7+x5−x4+x3−x+1>0
ích mk nha bạn
Bài 6 . Áp dụng BĐT Cauchy , ta có :
a2 + b2 ≥ 2ab ( a > 0 ; b > 0)
⇔ ( a + b)2 ≥ 4ab
⇔ \(\dfrac{\left(a+b\right)^2}{4}\)≥ ab
⇔ \(\dfrac{a+b}{4}\) ≥ \(\dfrac{ab}{a+b}\) ( 1 )
CMTT , ta cũng được : \(\dfrac{b+c}{4}\) ≥ \(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ac}{a+c}\)( 3)
Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :
\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
⇔ \(\dfrac{a+b+c}{2}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
Bài 4.
Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :
\(1+\dfrac{a}{b}\) ≥ \(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)
\(1+\dfrac{b}{c}\) ≥ \(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)
\(1+\dfrac{c}{a}\) ≥ \(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)
Nhân từng vế của ( 1 ; 2 ; 3) , ta được :
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\) ≥ \(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)
a, Có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+4x\ge0\forall x\)
\(\Rightarrow x^2+4x+10>0\forall x\left(đpcm\right)\)
Ta có tập xác định của hàm số : \(D=\text{[}0;+\infty\text{)}\)
Gọi \(x_1,x_2\) là các giá trị thuộc tập xác định của hàm số và \(0\le x_1< x_2\)
\(\Rightarrow x_1-x_2< 0\Leftrightarrow\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)< 0\Leftrightarrow\hept{\begin{cases}\sqrt{x_1}-\sqrt{x_2}< 0\\\sqrt{x_1}+\sqrt{x_2}>0\end{cases}}\)
Xét : \(g\left(x_1\right)-g\left(x_2\right)=\left(3\sqrt{x_1}-2\right)-\left(3\sqrt{x_2}-2\right)=3\left(\sqrt{x_1}-\sqrt{x_2}\right)< 0\)
\(\Rightarrow g\left(x_1\right)< g\left(x_2\right)\)
Vậy ta có \(\hept{\begin{cases}0\le x_1< x_2\\g\left(x_1\right)< g\left(x_2\right)\end{cases}}\) => Hàm số đồng biến với mọi \(x\ge0\)(đpcm)
xin lỗi bạn mình ngu bất đẳng thức lắm