Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a<b => a+a < a+b
=> 2a < a+b (1)
c<d => c+c < c+d
=> 2c < c+d (2)
m<n => m+m < m+n
=> 2m < m+n (3)
Từ (1); (2) và (3). => 2a + 2c +2m < a+b+c+d+m+n
=> 2(a+c+m) < a+b+c+d+m+n
=> \(\frac{a+c+m}{a+b+c+d+m+n}\)< \(\frac{1}{2}\)( đpcm)
Vì a<b;c<d;m<n
=>a+c+m<b+d+n
=>a+a+c+c+m+m<a+b+c+d+m+n
=>2a+2c+2m<a+b+c+d+m+n
=>2(a+c+m)<a+b+c+d+m+n
=>\(\frac{a+c+m}{2\left(a+c+m\right)}>\frac{a+c+m}{a+b+c+d+m+n}\)
=>\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
=>
ĐPCM.
l-i-k-e cho mình nha bạn.
Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc
Suy ra :
\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Mặt khác : ad < bc => ad + cd < bc + cd
\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Vậy : ....
b, Theo câu a ta lần lượt có :
\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
Bài giải
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\) ; \(\frac{1}{3^2}< \frac{1}{2\cdot3}\) ; ..... ; \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)
\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{8\cdot9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\) \(^{\left(1\right)}\)
Ta có : \(\frac{1}{2^2}>\frac{1}{2\cdot3}\) ; \(\frac{1}{3^2}>\frac{1}{3\cdot4}\) ; ..... ; \(\frac{1}{9^2}>\frac{1}{9\cdot10}\)
\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\) \(^{\left(2\right)}\)
Từ \(^{\left(1\right)}\) và \(^2\)
\(\Rightarrow\text{ }\frac{2}{5}< A< \frac{8}{9}\) \(\left(ĐPCM\right)\)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)
\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{9-8}{8\times9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
\(\Rightarrow A< \frac{8}{9}\left(1\right)\)
Ta có: \(A=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}>\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+...+\frac{10-9}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow A>\frac{2}{5}\left(2\right)\)
Từ (1) và (2) --> \(\frac{2}{5}< A< \frac{8}{9}\left(đpcm\right)\)
Các bạn nhớ k đúng mình nha (nếu đúng)
\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{a+c+m}{a+a+c+c+m+m}=\frac{a+c+m}{2\left(a+c+m\right)}=\frac{1}{2}\)
\(\Rightarrowđpcm\)
ta có \(\frac{a}{b}< \frac{c}{d}=>ad< bc=>ady< bcy=>ady+abx< bcy+abx\)
\(=>a\left(bx+dy\right)< b\left(ãx+cy\right)=>\frac{a}{b}< \frac{xa+yc}{xb+yd}\left(1\right)\)
ta lại có tương tự \(adx+cdy< bcx+cdy\)
\(=>d\left(ax+cy\right)< c\left(bx+dy\right)=>\frac{xa+yc}{xb+yd}< \frac{c}{d}\left(2\right)\)
từ 1 and 2 => dpcm
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{100}\right)\)
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{100}\right)\)
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{49}+\frac{1}{50}\right)\)
\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
Nhận xét :
\(A=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+...+\frac{1}{100}\right)>\left(\frac{1}{75}+...+\frac{1}{75}\right)+\left(\frac{1}{100}+...+\frac{1}{100}\right)\)
=> \(A>\frac{25}{75}+\frac{25}{100}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)(Đề bài của bạn đánh sai)
+) \(A=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+...+\frac{1}{100}\right)<\left(\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{75}+...+\frac{1}{75}\right)\)
=> \(A<\frac{25}{50}+\frac{25}{75}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
=> ĐPCM
Cái này dùng tích chéo nha bạn
a(b+d)<b(a+c) a/b<(b+d)/(a+c)
Có \(\frac{a}{b}< 1\Rightarrow a< b\) Do đó \(a+n< b+n\)\(\Rightarrow\frac{a+n}{b+n}< 1\)