Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a<b => a+a < a+b
=> 2a < a+b (1)
c<d => c+c < c+d
=> 2c < c+d (2)
m<n => m+m < m+n
=> 2m < m+n (3)
Từ (1); (2) và (3). => 2a + 2c +2m < a+b+c+d+m+n
=> 2(a+c+m) < a+b+c+d+m+n
=> \(\frac{a+c+m}{a+b+c+d+m+n}\)< \(\frac{1}{2}\)( đpcm)
Vì a<b;c<d;m<n
=>a+c+m<b+d+n
=>a+a+c+c+m+m<a+b+c+d+m+n
=>2a+2c+2m<a+b+c+d+m+n
=>2(a+c+m)<a+b+c+d+m+n
=>\(\frac{a+c+m}{2\left(a+c+m\right)}>\frac{a+c+m}{a+b+c+d+m+n}\)
=>\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
=>
ĐPCM.
l-i-k-e cho mình nha bạn.
Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc
Suy ra :
\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Mặt khác : ad < bc => ad + cd < bc + cd
\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Vậy : ....
b, Theo câu a ta lần lượt có :
\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
\(\hept{\begin{cases}a< b\Rightarrow2a< a+b\\c< d\Rightarrow2c< c+d\\m< n\Rightarrow2m< m+n\end{cases}}\)
\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)
a) vì a<b => 2a<a + b ; c < d => 2c < c + d ; m<n => 2m< m + n
=> 2a + 2c + 2m = 2 (a + c + m) < ( a + b + c + m + n)
=> \(\frac{a+c+m}{a+b+c+m+n}< \frac{1}{2}\left(đccm\right)\)
t i c k nha!! 4545654756678769780
Ta có:\(1\le a;2\le b;3\le c;4\le d;5\le m;6\le n\)
\(\Rightarrow\hept{\begin{cases}a+c+m\ge1+3+5=9\\a+b+c+m+n=1+2+3+5+6=17\end{cases}}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+m+n}\ge\frac{9}{17}>\frac{9}{18}=\frac{1}{2}\)
b,Tương tự
Do a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 × (a + c + m) < a + b + c + d + m + n
=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)
Do a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 × (a + c + m) < a + b + c + d + m + n
=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)
a < b \(\Rightarrow\) 2a < a + b
b < d \(\Rightarrow\) 2b < c + d
m < n \(\Rightarrow\) 2m < m + n
\(\Rightarrow\) 2a + 2b + 2m = 2 ( a + b + m ) < ( a + b + c + d + m + n ) . Do đó
a + b + m/a + b + c + d + m + n < 1/2 \(\Rightarrow\) ( đpcm )
Do a<b<c<d<m<n
=>a+c+m<b+d+n
=>2(a+c+m)<a+b+c+d+m+n
=>\(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}<1\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
a<b=>2a<a+b
c<d=>2c<c+d
m<n=>2m<m+n
=>2(a+c+m)<a+b+c+d+m+n
=>\(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}<\frac{a+b+c+d+m+n}{a+b+c+d+m+n}=1\)
<=>\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)(đpcm)
Cho 6 số nguyên dương a < b < c < d < m < n
Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
a < b \(\Rightarrow\) 2a < a + b ; c < d \(\Rightarrow\) 2c < c + d ; m < n \(\Rightarrow\) 2m < m + n
Suy ra 2a + 2c + 2m = 2(a + c + m) < (a + b + c + d + m + n). Do đó
\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\) (đpcm)
\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{a+c+m}{a+a+c+c+m+m}=\frac{a+c+m}{2\left(a+c+m\right)}=\frac{1}{2}\)
\(\Rightarrowđpcm\)