Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B M H C D K F I
a/
Xét tg vuông AMO và tg vuông BMO có
MA=MB (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)
OA=OB=R
=> tg AMO = tg BMO (2 tg vuông có 2 cạnh góc vuông bằng nhau)
\(\Rightarrow\widehat{AMO}=\widehat{BMO}\)
Xét tg MAB có
MA=MB (cmt) => tg MAB cân tại M
\(\widehat{AMO}=\widehat{BMO}\) (cmt)
\(\Rightarrow OM\perp AB\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
Xét tg vuông AMO có
\(AM^2=MO.MH\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
b/
Ta có \(\widehat{ADC}=90^o\) (góc nt chắn nửa đường tròn) => tg ACD vuông tại D \(\Rightarrow AD\perp MC\)
Xét tg vuông AMC có
\(AM^2=MD.MC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Ta có
\(AM^2=MO.MH\) (cmt)
\(\Rightarrow MH.MO=MD.MC\)
c/ Xét tg AMK có
\(OM\perp AB\left(cmt\right)\Rightarrow OH\perp AK\)
\(AD\perp MC\left(cmt\right)\Rightarrow AD\perp MK\)
\(\Rightarrow KI\perp AB\) (trong tg 3 đường cao đồng quy)
Phần còn lại không biết điểm E là điểm nào?
d, kéo dài BC cắt AM tại Q
\(\Delta ACQ\) vuông tại C có MA= MC (2 tiếp tuyến cắt nhau)
góc MAC = góc MCA
--> MAC + AQB=MCA+MCQ=90
-->AQB=MCQ-->MC=MQ--> MA=MQ
\(\Delta MAB\sim\Delta NHB\Rightarrow\frac{NH}{MA}=\frac{NB}{MB}\)
\(\Delta QMB\sim\Delta CNB\Rightarrow\frac{CN}{QM}=\frac{BN}{BM}\)
------>>>>........
mỗi câu C là khó thoi