K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 7 2021

a) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)

\(=\left[\left(x+a\right)\left(x+4a\right)\right]\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4\)

\(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)

\(=\left(x^2+5ax+5a^2\right)^2-\left(a^2\right)^2+a^4\)

\(=\left(x^2+5ax+5a^2\right)^2\)

b) \(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)

\(=\left(x^2+y^2+z^2\right)\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]+\left(xy+yz+zx\right)^2\)

\(=\left(x^2+y^2+z^2\right)^2+2\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)

\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)

22 tháng 10 2021

\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)

\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)

\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)

25 tháng 9 2018

a) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)

\(=\left[\left(x+a\right)\left(x+4a\right)\right]\cdot\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4\)

\(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)

\(=\left(x^2+5ax+5a^2-a^2\right)\left(x^2+5ax+5a^2+a^2\right)+a^4\)\

\(=\left(x^2+5ax+5a^2\right)^2-a^4+a^4\)

\(=\left(x^2+5ax+5a^2\right)^2\)

b) Đặt \(a=x^2+y^2+z^2\);     \(b=xy+yz+xz\)

\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)

\(=a\left(a+2b\right)+b^2\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)

24 tháng 9 2019

a) \left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4(x+a)(x+2a)(x+3a)(x+4a)+a4

=\left[\left(x+a\right)\left(x+4a\right)\right]\cdot\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4=[(x+a)(x+4a)]⋅[(x+2a)(x+3a)]+a4

=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4=(x2+5ax+4a2)(x2+5ax+6a2)+a4

=\left(x^2+5ax+5a^2-a^2\right)\left(x^2+5ax+5a^2+a^2\right)+a^4=(x2+5ax+5a2−a2)(x2+5ax+5a2+a2)+a4\

=\left(x^2+5ax+5a^2\right)^2-a^4+a^4=(x2+5ax+5a2)2−a4+a4

=\left(x^2+5ax+5a^2\right)^2=(x2+5ax+5a2)2

b) Đặt a=x^2+y^2+z^2a=x2+y2+z2;     b=xy+yz+xzb=xy+yz+xz

\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2

=a\left(a+2b\right)+b^2=a(a+2b)+b2

=a^2+2ab+b^2=\left(a+b\right)^2=a2+2ab+b2=(a+b)2

=\left(x^2+y^2+z^2+xy+yz+zx\right)^2=(x2+y2+z2+xy+yz+zx)2

8 tháng 10 2019

Hai câu đầu tham khảo

Câu hỏi của Bangtan Sonyeondan - Toán lớp 8 - Học toán với OnlineMath

8 tháng 10 2019

c) \(E=\left(x+a\right)\left(x+2a\right)\left(a+3a\right)\left(x+4a\right)+a^4\)

\(=\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(a+3a\right)+a^4\)

\(=\left(x^2+5ax+4a^2\right)\left(a^2+5ax+6a^2\right)+a^4\)(1)

Đặt \(x^2+5ax+4a^2=t\)

\(\Rightarrow\left(1\right)=t\left(t+2a^2\right)+a^4\)

\(=t^2+2a^2t+a^4=\left(t+a^2\right)^2\)(2)

Mà \(x^2+5ax+4a^2=t\)

Nên \(\left(2\right)=\left(x^2+5ax+5a^2\right)^2\)

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

AH
Akai Haruma
Giáo viên
8 tháng 5 2023

Lời giải:

Ta có:

$xy+yz+xz=(x+y+z)^2-(x^2+y^2+z^2+xy+yz+xz)=1-\frac{2}{3}=\frac{1}{3}$

$\Rightarrow 3(xy+yz+xz)=1=(x+y+z)^2$

$\Leftrightarrow (x+y+z)^2-3(xy+yz+xz)=0$

$\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0$

$\Leftrightarrow 2(x^2+y^2+z^2-xy-yz-xz)=0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0$

Vì $(x-y)^2, (y-z)^2, (z-x)^2\geq 0$ với mọi $x,y,z$.

Do đó để tổng của chúng bằng $0$ thì $x-y=y-z=z-x=0$

$\Leftrightarrow x=y=z$

Khi đó:

$A=\frac{x}{x+x}+\frac{x}{x+x}+\frac{x}{x+x}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}$

11 tháng 7 2019

Ta có: \(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\xz+x+z=7\end{cases}}\Rightarrow\hept{\begin{cases}xy+x+y+1=2\\yz+y+z+1=4\\xz+x+z+1=8\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(x+z\right)\left(z+1\right)=8\end{cases}}\)

Nhân theo vế: 

\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\Rightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\end{cases}}\)

Thay vào từng trường hợp tìm x;y;z