Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{14}{2\sqrt{3}-\sqrt{5}}\)
\(=\dfrac{14\left(2\sqrt{3}+\sqrt{5}\right)}{\left(2\sqrt{3}-\sqrt{5}\right)\left(2\sqrt{3}+\sqrt{5}\right)}\)
\(=\dfrac{14\left(2\sqrt{3}+\sqrt{5}\right)}{\left(2\sqrt{3}\right)^2-\sqrt{5^2}}=\dfrac{14\left(2\sqrt{3}+\sqrt{5}\right)}{12-5}\)
\(=\dfrac{14\left(2\sqrt{3}+\sqrt{5}\right)}{7}=2\left(2\sqrt{3}+\sqrt{5}\right)\)
\(=4\sqrt{3}+2\sqrt{5}\)
b) \(\dfrac{x^2-y}{x-\sqrt{y}}=\dfrac{\left(x-\sqrt{y}\right)\left(x+\sqrt{y}\right)}{x-\sqrt{y}}=x+\sqrt{y}\)
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{2}\)
mấy bài dạng này bn nên sử dụng cách nhân liên hợp hoặc phân tích đa thức thành nhân tử nha . mk lm 1 bài còn lại thì bn tự lm cho quen nha :)
a) ta có : \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}=\dfrac{\left(\sqrt{6}+\sqrt{14}\right)\left(2\sqrt{3}+\sqrt{7}\right)}{\left(2\sqrt{3}-\sqrt{7}\right)\left(2\sqrt{3}+\sqrt{7}\right)}\)
\(=\dfrac{6\sqrt{2}+\sqrt{42}+2\sqrt{42}+7\sqrt{2}}{\left(2\sqrt{3}\right)^2-\left(\sqrt{7}\right)^2}=\dfrac{13\sqrt{2}+3\sqrt{42}}{5}\)
gợi ý : b) phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức số \(6\)
c) nhân liên hợp 2 lần nha .
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}\)
=\(\dfrac{\left(\sqrt{6}+\sqrt{14}\right)\left(2\sqrt{3}+\sqrt{7}\right)}{\left(2\sqrt{3}-\sqrt{7}\right).\left(2\sqrt{3}+\sqrt{7}\right)}\)
=\(\dfrac{\left(\sqrt{6}+\sqrt{14}\right).\left(2\sqrt{3}+\sqrt{7}\right)}{12-7}\)
=\(\dfrac{2\sqrt{18}+\sqrt{42}+2\sqrt{42}+\sqrt{98}}{5}\)
=\(\dfrac{6\sqrt{2}+\sqrt{42}+2\sqrt{42}+7\sqrt{2}}{5}\)
=\(\dfrac{3\sqrt{42}+13\sqrt{2}}{5}\)
b) \(\dfrac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
=\(\dfrac{\left(5\sqrt{5}+3\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)}\)
=\(\dfrac{25-5\sqrt{15}+3\sqrt{15}-9}{2}\)
=\(\dfrac{16-2\sqrt{15}}{2}=8-\sqrt{15}\)
Câu c mk chưa làm được
a: \(\dfrac{6}{5\sqrt{8}}=\dfrac{6}{10\sqrt{2}}=\dfrac{3}{5\sqrt{2}}=\dfrac{3\sqrt{2}}{10}\)
b: \(\dfrac{7}{5+2\sqrt{3}}=\dfrac{7\left(5-2\sqrt{3}\right)}{13}\)
c: \(\dfrac{6}{\sqrt{7}-\sqrt{5}}=\dfrac{6\left(\sqrt{7}+\sqrt{5}\right)}{2}=3\left(\sqrt{7}+\sqrt{5}\right)\)
a) \(\dfrac{6}{5\sqrt{8}}\)
\(=\dfrac{6}{5\cdot2\sqrt{2}}\)
\(=\dfrac{6}{10\sqrt{2}}\)
\(=\dfrac{3\sqrt{2}}{5\sqrt{2}\cdot\sqrt{2}}\)
\(=\dfrac{3\sqrt{2}}{10}\)
b) \(\dfrac{7}{5+2\sqrt{3}}\)
\(=\dfrac{7\left(5-2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}\)
\(=\dfrac{7\left(5-2\sqrt{3}\right)}{5^2-\left(2\sqrt{3}\right)^2}\)
\(=\dfrac{7\left(5-2\sqrt{3}\right)}{13}\)
\(=\dfrac{35-14\sqrt{3}}{13}\)
c) \(\dfrac{6}{\sqrt{7}-\sqrt{5}}\)
\(=\dfrac{6\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)
\(=\dfrac{6\left(\sqrt{7}+\sqrt{5}\right)}{2}\)
\(=3\sqrt{7}+3\sqrt{5}\)
\(\frac{2}{\sqrt{3}-5}=\frac{2\left(\sqrt{3}+5\right)}{3-5^2}=\frac{2\left(\sqrt{3}+5\right)}{-22}=\frac{-5-\sqrt{3}}{11}\)
\(=\frac{6\sqrt{2}\left(3\sqrt{7}-5\sqrt{2}\right)}{2\left(3\sqrt{7}-5\sqrt{2}\right)}=\frac{6\sqrt{2}}{2}=3\sqrt{2}\)