x– 2(m + 1)x + m2 + 3 = 0 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

Ta có : \(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)=\left(-2m-2\right)^2-4\left(m^2+3\right)\)

\(=\left(2m+2\right)^2-4\left(m^2+3\right)=4m^2+8m+4-4m^2-12=8m-8\)

Để phương trình có nghiệm \(8m-8>0\Leftrightarrow m< 1\)

\(8m-8=0\Leftrightarrow m=1\)

Theo Vi et ta có \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{2m+2}{1}=2m+2\\x_1x_1=\frac{c}{a}=m^2+3\end{cases}}\)

\(P=2m+2+m^2+3=m^2+2m+5\)

\(=m^2+2m+1+4=\left(m+1\right)^2+4\ge4\)

Dấu ''='' xảy ra <=> m = -1 

Vậy GTNN P là 4 <=> m =-1 

Để phương trình 1 có nghiệm \(=>\Delta\ge0\)

\(\Delta=4.\left(m+1\right)^2-4.\left(m^2+3\right)=4m^2+8m+4-4m^2-12=8m-8\ge0=>m\ge1\)

a, \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)

\(\Delta=\left(3m+1\right)^2-4\left(2m^2+m-1\right)\)

\(=9m^2+6m+1-8m^2-4m+4\)

\(=m^2+2m+1+4\)

\(=\left(m+1\right)^2+4\) \(\ge4\)với \(\forall m\)

\(\Rightarrow\)Phương trình luôn có \(2n_0\)phân biệt với mọi m

b,

Theo vi-ét :

\(\hept{\begin{cases}x_1+x_2=3m+1\\x_1x_2=2m^2+m-1\end{cases}}\)

\(B=x_1^2+x_2^2-3x_1x_2\)

\(=\left(x_1+x_2\right)^2-5x_1x_2\)

\(=\left(3m+1\right)^2-5\left(2m^2+m-1\right)\)

\(=9m^2+6m+1-10m^2-5m+5\)

\(=-m^2+m+6\)

\(=-\left(m^2-m-6\right)\)

\(=-\left[\left(m-\frac{1}{2}\right)^2-\frac{1}{4}-6\right]\)

\(=-\left[\left(m-\frac{1}{2}\right)^2-\frac{25}{4}\right]\)

\(=-\left(m-\frac{1}{2}\right)^2+\frac{25}{4}\)

Vậy GTLN  \(B=\frac{25}{4}\)khi \(-\left(m-\frac{1}{2}\right)^2=0\) \(\Leftrightarrow m=\frac{1}{2}\)

6 tháng 4 2017

\(x^2-2mx+m^2-m+4=0\)

a/ ( a = 1; b = -2m; c = m^2 - m + 4 )

\(\Delta=b^2-4ac\)

   \(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)

   \(=4m^2-4m^2+4m-16\)   

    \(=4m-16\)

Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)

Ta có: \(A=x_1^2+x_2^2-x_1x_2\)

             \(=S^2-2P-P\)

             \(=S^2-3P\)

             \(=\left(2m\right)^2-3\left(m^2-m+4\right)\)

             \(=4m^2-3m^2+3m-12\)

              \(=m^2+3m-12\)

               \(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)

                \(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)

Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)

6 tháng 4 2017

a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
 để pt có ng khi Δ > 0 & Δ=0
 => m> hoặc = 4
 

19 tháng 5 2023

m=1.

20 tháng 3 2021

a, \(x^2-2\left(m+1\right)x+m^2+m+1=0\)

Ta có : \(\left(-2m-2\right)^2-4\left(m^2+m+1\right)=4m^2+8m+4-4m^2-4m-4\)

\(=4m\)Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay \(4m>0\Leftrightarrow m>0\)

b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+m+1\end{cases}}\)

\(x_1^2+x_2^2=3x_1x_2-1\)

mà \(x_1+x_2=2m+2\Leftrightarrow\left(x_1+x_2\right)^2=\left(2m+2\right)^2\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-\left(m^2+m+1\right)=3m^2+7m+3\)

hay \(3m^2+7m+3=3\left(m^2+m+1\right)-1\)

\(\Leftrightarrow3m^2+7m+3=3m^2+3m+2\Leftrightarrow4m+1=0\Leftrightarrow m=-\frac{1}{4}\)

7 tháng 3 2022

a, \(\Delta\)' =(m+3)\(^2\)-(m\(^2\)+6m)=m\(^2\)+6m+9-m\(^2\)-6m=9>0 với mọi m .Pt luôn có 2 no pb

b, Áp dụng hệ thức vi-ét có: x\(_1\)+x\(_2\)=-2(m+3)    ;   x\(_1\)x\(_2\)=m\(^2\)+6m     (I)

Để (2x\(_1\)+1)(2x\(_2\)+1)=13\(\Leftrightarrow\) 4x\(_1\)x\(_2\)+2(x\(_1\)+x\(_2\))+1=13       (*)

Thay (I) vào (*) có : 4(m\(^2\)+6m)-4(m+3)+1=13\(\Leftrightarrow\)4m\(^2\)+20m-24=0\(\Leftrightarrow\)m=1; m=-6

19 tháng 5 2023

Đáp số:  �=1;�=−6m=1;m=6

2 tháng 6 2017

a /

xét ten ta ;(1-2m)^2 - 4(m-3) >0

     <=>1-4m+4m^2-4m+12

     <=>4m^2 +13 luông đúng với mọi m tham số  => phương trình có 2 nhiệm phân biệt x1 x2

25 tháng 4 2018

cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất