Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để PT có nghiệm phân biệt thì: \(\Delta^'>0\)
Hay: \(\left[-\left(m+1\right)\right]^2-\left(m^2-10\right)>0\)
\(\Leftrightarrow m^2+2m+1-m^2+10>0\)
\(\Leftrightarrow2m>-11\)
\(\Leftrightarrow m>-\frac{11}{2}\)
Theo Vi-et, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-10\end{cases}}\) (1)
Ta có: \(C=x_1^2+x_2^2=x_1^2+2x_1x_2+x^2_2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay (1) vào C, ta được:
\(C=4\left(m+1\right)^2-2\left(m^2-10\right)\)
\(=4m^2+8m+4-2m^2+20\)
\(=2m^2+8m+24\)
\(=2\left(m^2+4m+12\right)\)
\(=2\left(m^2+4m+4+8\right)\)
\(=2\left(m+2\right)^2+16\ge16\forall m\)
=> Min C = 16 tại m = - 2 (tm)
=.= hk tốt!!
Để phương trình có nghiệm x1;x2 thì :
\(\Delta'=\left(m+4\right)^2-\left(m^2-8\right)\)
\(=\left(m^2+8m+16\right)-m^2+8\)
\(=8m+24\ge0\Leftrightarrow m\ge-3\)
Theo hệ thức Viet,ta có :
\(\left\{{}\begin{matrix}x1+x2=2\left(m+4\right)\\x1.x2=m^2-8\end{matrix}\right.\)
a) \(A=x1^2+x2^2-x1-x2=\left(x1+x2\right)^2-\left(x1+x2\right)-2x1x2=4\left(m+4\right)^2-2\left(m+4\right)-2\left(m^2-8\right)\)
\(A=2m^2+30m+66=0\)
\(A=\left(4m+3\right)^2-\frac{519}{8}\ge-\frac{519}{8}\)
b) \(B=2\left(m+4\right)-3\left(m^2-8\right)\)
\(B=-3m^2+2m+32\)
\(B=\frac{97}{3}-\left(3x-1\right)^2\le\frac{97}{3}\Leftrightarrow x=\frac{1}{3}\)
c) \(C=x1^2+x2^2-x1x2=\left(x1+x2\right)^2-3x1x2\)
\(C=4\left(m+4\right)^2-3\left(m^2-8\right)\)
\(C=-3m^2+4m+28\)
\(C=\frac{88}{3}-\left(3x-2\right)^2\le\frac{88}{3}\Leftrightarrow x=\frac{2}{3}\)
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a /
xét ten ta ;(1-2m)^2 - 4(m-3) >0
<=>1-4m+4m^2-4m+12
<=>4m^2 +13 luông đúng với mọi m tham số => phương trình có 2 nhiệm phân biệt x1 x2
cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất