Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t = x2 (t \(\ge\) 0). Khi đó, phương trình đã cho trở thành: t2 - 2(m2 + 2).t + m4 + 3 = 0 (*)
\(\Delta\)' = (m2 +2)2 - (m4 + 3) = m4 + 4m2 + 4 - m4 - 3 = 4m2 + 1 > 0
=> (*) luôn có 2 nghiệm phân biệt. Gọi hai nghiệm đó là t1; t2
Theo hệ thức Vi - et ta có: t1 + t2 = 2(m2 + 2) > 0
t1. t2 = m4 + 3 > 0
=> t1 > 0 và t2 > 0 (thỏa mãn điều kiện của t)
vậy (*) luôn có 2 nghiệm dương phân biệt => pt đã cho luôn có 4 nghiệm phân biệt x1; x2 ; x3; x4
trong đó x1; x2 thỏa mãn x12 = x22 = t1; x32 = x24 = t2 ; x1; x2 đối nhau ; x3; x4 đối nhau
=> \(x_1^2+x^2_2+x^2_3+x^2_4+x_1\cdot x_2\cdot x_3\cdot x_4=2t_1+2t_2+\left(-x_1^2\right).\left(-x_2^2\right)=2.\left(t_1+t_2\right)+t_1.t_2\)
= 2.2.(m2 + 2) + m4 + 3 = m4 + 4m2 + 11
Áp dụng hệ thức Vi-et, ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)
Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.
Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)
Suy ra \(MinA^2=0\Leftrightarrow m=-1\)
Vậy Min A = 0 \(\Leftrightarrow\)m = -1
ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét
\(\Delta'=-m^2+m\ge0\Rightarrow0\le m\le1\)
Đặt \(A=\left|x_1+x_2+x_1x_2\right|\)
\(=\left|2m-2+2m^2-3m+1\right|\)
\(=\left|2m^2-m-1\right|=\left|2\left(m-\frac{1}{2}\right)^2-\frac{9}{8}\right|\)
Do \(0\le m\le1\Rightarrow-\frac{9}{8}\le2m^2-m-1\le0\)
\(\Rightarrow0\le\left|2m^2-m-1\right|\le\frac{9}{8}\)
\(\Rightarrow A_{max}=\frac{9}{8}\) khi \(m=\frac{1}{2}\)
\(\text{Δ}=\left(2m+8\right)^2-4\left(m^2-8\right)\)
\(=4m^2+32m+64-4m^2+64=32m+128\)
Để phương trình có hai nghiệm thì 32m+128>=0
hay m>=-4
a: \(A=x_1+x_2-3x_1x_2\)
\(=\left(2m+8\right)-3\left(m^2-8\right)\)
\(=2m+8-3m^2+24\)
\(=-3m^2+2m+32\)
\(=-3\left(m^2-\dfrac{2}{3}m-\dfrac{32}{3}\right)\)
\(=-3\left(m^2-2\cdot m\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{97}{9}\right)\)
\(=-3\left(m-\dfrac{1}{3}\right)^2+\dfrac{97}{3}< =\dfrac{97}{3}\)
Dấu '=' xảy ra khi m=1/3
b: \(B=\left(x_1+x_2\right)^2-2x_1x_2-2\)
\(=\left(2m+8\right)^2-2\left(m^2-8\right)-2\)
\(=4m^2+32m+64-2m^2+16-2\)
\(=2m^2+32m+78\)
\(=2\left(m^2+16m+39\right)\)
\(=2\left(m^2+16m+64-25\right)\)
\(=2\left(m+8\right)^2-50>=-50\)
Dấu '=' xảy ra khi m=-8
a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).
Suy ra phương trình (1) luôn có nghiệm với mọi m.
b) Theo Vi-et ta có:
\(x_1+x_2=2m,x_1.x_2=m-4\)
Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)
\(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)
\(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)
\(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)
\(\Leftrightarrow m=0\)