Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2-2\left(m+1\right)x+m^2+m+1=0\)
Ta có : \(\left(-2m-2\right)^2-4\left(m^2+m+1\right)=4m^2+8m+4-4m^2-4m-4\)
\(=4m\)Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay \(4m>0\Leftrightarrow m>0\)
b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+m+1\end{cases}}\)
\(x_1^2+x_2^2=3x_1x_2-1\)
mà \(x_1+x_2=2m+2\Leftrightarrow\left(x_1+x_2\right)^2=\left(2m+2\right)^2\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)
\(=4m^2+8m+4-\left(m^2+m+1\right)=3m^2+7m+3\)
hay \(3m^2+7m+3=3\left(m^2+m+1\right)-1\)
\(\Leftrightarrow3m^2+7m+3=3m^2+3m+2\Leftrightarrow4m+1=0\Leftrightarrow m=-\frac{1}{4}\)
ta có phương trình x^2 +3x +m =0
nên để pt có 2 nghiệm phân biệt thì 9 - 4m > 0 hay m <9/4
theo Viét nếu x1 và x2 là 2 nghiệm của pt thì
x1 +x2 =-3 (1)và
x1*x2=m => 2x1*x2 =2m (2)
=> x1^2 +x2^2 +2m = (x1 +x2 )^2 (từ (1) và (2) )( cái hằng đẳng thức chắc bạn phải biết r đúng ko )
mà x1 +x2 =-3 ,,,x1^2 +x2^2 = 31 nên ta có
31 +2m =9
m = -11
Ta có : \(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)=\left(-2m-2\right)^2-4\left(m^2+3\right)\)
\(=\left(2m+2\right)^2-4\left(m^2+3\right)=4m^2+8m+4-4m^2-12=8m-8\)
Để phương trình có nghiệm \(8m-8>0\Leftrightarrow m< 1\)
\(8m-8=0\Leftrightarrow m=1\)
Theo Vi et ta có \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{2m+2}{1}=2m+2\\x_1x_1=\frac{c}{a}=m^2+3\end{cases}}\)
\(P=2m+2+m^2+3=m^2+2m+5\)
\(=m^2+2m+1+4=\left(m+1\right)^2+4\ge4\)
Dấu ''='' xảy ra <=> m = -1
Vậy GTNN P là 4 <=> m =-1
Để phương trình 1 có nghiệm \(=>\Delta\ge0\)
\(\Delta=4.\left(m+1\right)^2-4.\left(m^2+3\right)=4m^2+8m+4-4m^2-12=8m-8\ge0=>m\ge1\)
a /
xét ten ta ;(1-2m)^2 - 4(m-3) >0
<=>1-4m+4m^2-4m+12
<=>4m^2 +13 luông đúng với mọi m tham số => phương trình có 2 nhiệm phân biệt x1 x2
cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất