K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017
1, (delta)' = (-m)^2 - (m^2 - 4) = m^2 - m^2 + 4 = 4 => Ptr (1) luôn có nghiệm với mọi m 2, Với mọi m ptr (1) có 2 nghiệm x1,x2 Theo hộ thức Vi-ét ta có x1 + x2 = - b/a = -(-2m)/1 = 2m x1*x2 = c/a =(m^2 - 4)/1= m^2 - 4 Theo bài ra ta có x1^2 + x2^2 = 26 <=> (x1+x2)^2 - 2*x1*x2 = 26 <=> (2m)^2 - 2*(m^2 - 4) = 26 <=> 4m^2 - 2m^2 - 8 = 26 <=> 2m^2 - 8 - 26 = 0 <=> 2(m^2 - 17) = 0 <=> m^2 - 17 = 0 <=> (m - căn17)(m + căn17) = 0 <=> m = căn17 hoặc m = -(căn17) (Sr ko nhìu tg nên mk ko sd kí hiệu)
2 tháng 6 2017

a /

xét ten ta ;(1-2m)^2 - 4(m-3) >0

     <=>1-4m+4m^2-4m+12

     <=>4m^2 +13 luông đúng với mọi m tham số  => phương trình có 2 nhiệm phân biệt x1 x2

25 tháng 4 2018

cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất

6 tháng 4 2017

\(x^2-2mx+m^2-m+4=0\)

a/ ( a = 1; b = -2m; c = m^2 - m + 4 )

\(\Delta=b^2-4ac\)

   \(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)

   \(=4m^2-4m^2+4m-16\)   

    \(=4m-16\)

Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)

Ta có: \(A=x_1^2+x_2^2-x_1x_2\)

             \(=S^2-2P-P\)

             \(=S^2-3P\)

             \(=\left(2m\right)^2-3\left(m^2-m+4\right)\)

             \(=4m^2-3m^2+3m-12\)

              \(=m^2+3m-12\)

               \(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)

                \(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)

Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)

6 tháng 4 2017

a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
 để pt có ng khi Δ > 0 & Δ=0
 => m> hoặc = 4
 

5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

31 tháng 12 2017

ta có phương trình x^2 +3x +m =0 

nên để pt có 2 nghiệm phân biệt thì 9 - 4m > 0 hay m <9/4

theo Viét  nếu x1 và x2 là 2 nghiệm của pt thì 

x1 +x2 =-3 (1)và

x1*x2=m  => 2x1*x2 =2m (2)

=> x1^2 +x2^2 +2m = (x1 +x2 )^2 (từ (1) và (2) )( cái hằng đẳng thức chắc bạn phải biết r đúng ko )

mà x1 +x2 =-3 ,,,x1^2 +x2^2 = 31 nên ta có

31 +2m =9 

m = -11

31 tháng 12 2017

vưa nãy mình -   nhầm 31 + 2m =9  thì m= -12 mới phải (hi  hi )