K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

a) Ta có \(\Delta'=m^2+1>0\forall m\) nên phương trình luôn có hai nghiệm phân biệt với mọi m

b) Theo Viet ta có:

\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=-1\end{cases}}\)

Vậy nên \(x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2=4m^2+3\)

Để \(x_1^2+x_2^2-x_1x_2=7\Rightarrow4m^2+3=7\Rightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)

6 tháng 6 2018

b theo viet co 

x1+x2=2m

x1*x2=-1

x1^2+x2^2-x1*x2=7

(x1+x2)^2 -2x1*x2-x1-x2=7

4m^2+2+1=7

4m^2=4 m=+-1

21 tháng 5 2016

Hoa Sinh Thcs Gia Thuy

15 tháng 5 2019

Delta= b^2 -4ac = (6)^2 - 4(-m^2 +8m -8)

=> 36 +4m(m-2+2) 

=> 36+4m^2-4m+8m

=> 4m^2 - 4m +44

=> (2m)^2 - 2×(2m)(1) + 1^2 + 43

=> (2m - 1)^2 +43 

Mà (2m -1)^2 > 0 vơiz mọi m

=> (2m-1)^2 +43 > 43 với mọi m

Vậy với mọi giá trị của m thì.....

13 tháng 4 2017

*,với m=-2 thì bạn thay vào pt rồi giải như thường nha

*,\(\Delta\)=[-2(m+1)]2-4(2m-4)=4(m2+2m+1)-8m+16=4m2+8m +4-8m+16=4m2+20>0

=> phương trình luôn có 2 nghiệm phân biệt

*, theo hệ thức Vi et x1+x2=2(m+1);x1x2=2m-4

Ta có A=(x1+x2)2-2x1x2

Bạn thay vào rồi tính ra đc A=4m2+4m +12=(2m)2+4m+1+11=(2m+1)2+11 lớn hơn hoặc = 11

dấu = xảy ra khi 2m+1=0=> m=-1/2

17 tháng 3 2020

a) Hoành độ giao điểm của ( P ) và ( d ) là nghiệm phương trình:

\(x^2=2mx-2m+3\) (2)

<=> \(x^2-2mx+2m-3=0\)

Có: \(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)với mọi m

=> Với mọi m phương trình (2) luôn có hai nghiệm phân biết

=> Với mọi m (d) luôn cắt ( P ) tại hai điểm phân biệt 

___________

c) Để phương trình (1) có nghiệm điều kiện là: \(\Delta'=\left(k-1\right)^2-\left(k-3\right)=k^2-3k+4=\left(k-\frac{3}{2}\right)^2+\frac{7}{4}>0\)với mọi m

=> Phương trình (1) có 2 nghiệm \(x_1;x_2\)với mọi m 

Áp dụng định lí viets ta có: \(\hept{\begin{cases}x_1+x_2=2\left(k-1\right)\\x_1.x_2=k-3\end{cases}}\)mà \(x_1=\frac{5}{3}x_2\)

nên : \(\frac{5}{3}x_2+x_2=2k-2\)<=> \(\frac{8}{3}x_2=2k-2\)<=> \(x_2=\frac{3}{4}\left(k-1\right)\)

khi đó: \(x_1=\frac{5}{3}x_2=\frac{5}{4}\left(k-1\right)\)

Suy ra \(x_1.x_2=k-3\)<=> \(\frac{15}{16}\left(k-1\right)^2=k-3\)

<=> \(15k^2-46k+63=0\)(3)

có: \(\Delta\)<0 

=> (3) vô nghiệm

=> không tồn tại k