K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

ta có:\(\sqrt{45+27\sqrt{2}}\) +\(\sqrt{45-27\sqrt{2}}\) =3(\(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\))

phân thức cần biến đổi trở thành:\(\dfrac{\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}\).3

=\(\dfrac{10+2\sqrt{7}}{6\sqrt{2}}=\dfrac{5+\sqrt{7}}{\sqrt{2}}=\dfrac{5\sqrt{2}+\sqrt{14}}{2}\)

lấy phân số vừa tìm được cộng cho \(\dfrac{\sqrt{14}}{2}\) ta được giá trị biểu thức cần tìm là \(\dfrac{5\sqrt{2}}{2}\)

16 tháng 11 2017

Tại sao kết quả lại bằng, có thể giải thích hộ mình ko\(\dfrac{10+2\sqrt{7}}{6\sqrt{2}}\)

25 tháng 7 2018

\(\dfrac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\dfrac{\sqrt{9\left(5+3\sqrt{2}\right)}+\sqrt{9\left(5-3\sqrt{2}\right)}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\dfrac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}{3+\sqrt{2}-3+\sqrt{2}}\)

\(=\dfrac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{5+3\sqrt{2}-5+3\sqrt{2}}-\dfrac{3+\sqrt{2}+2\sqrt{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}+3-\sqrt{2}}{2\sqrt{2}}\)

\(=\dfrac{3\left[5+3\sqrt{2}+5-3\sqrt{2}+2\sqrt{\left(5+3\sqrt{2}\right)\left(5-3\sqrt{2}\right)}\right]}{6\sqrt{2}}-\dfrac{6+2\sqrt{7}}{2\sqrt{2}}\)

\(=\dfrac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\dfrac{6+2\sqrt{7}}{2\sqrt{2}}=\dfrac{30+6\sqrt{7}-18-6\sqrt{7}}{6\sqrt{2}}=\dfrac{12}{6\sqrt{2}}\)

\(=\sqrt{2}\)

25 tháng 7 2018

\(\dfrac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\\ =\dfrac{3\sqrt{5+3\sqrt{2}}+3\sqrt{5-3\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\\ =\dfrac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}\right)}-\dfrac{\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}}{\sqrt{6+3\sqrt{2}}-\sqrt{6-4\sqrt{2}}}\\ =\dfrac{3\left(5+3\sqrt{2}+2\sqrt{25-18}+5-3\sqrt{2}\right)}{5+3\sqrt{2}-5+3\sqrt{2}}-\dfrac{\sqrt{4+2+4\sqrt{2}}+\sqrt{4+2-4\sqrt{2}}}{\sqrt{4+2+4\sqrt{2}}-\sqrt{4+2-4\sqrt{2}}}\\ =\dfrac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\dfrac{\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}}{\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}}\\ =\dfrac{10+2\sqrt{7}}{2\sqrt{2}}-\dfrac{2+\sqrt{2}+2-\sqrt{2}}{2+\sqrt{2}-2+\sqrt{2}}\\ =\dfrac{10+2\sqrt{7}}{2\sqrt{2}}-\dfrac{4}{2\sqrt{2}}=\dfrac{6+2\sqrt{7}}{2\sqrt{2}}\)

2 tháng 7 2018

\(\dfrac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}=\dfrac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\dfrac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}=\dfrac{4+2\sqrt{\left(5+3\sqrt{2}\right)\left(5-3\sqrt{2}\right)}-2\sqrt{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}}{2\sqrt{2}}\) \(=\dfrac{4+2\sqrt{7}-2\sqrt{7}}{2\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

2 tháng 7 2018

chi tiết hơn 1 tý đc k bạn

16 tháng 12 2022

a: \(=\sqrt{5}-3\sqrt{5}-4\sqrt{3}+15\sqrt{3}=-2\sqrt{5}+11\sqrt{3}\)

b: \(=3\sqrt{10}-\sqrt{5}+6-\sqrt{2}\)

c; \(=15\sqrt{2}-10\sqrt{3}-12\sqrt{2}-\sqrt{3}=-11\sqrt{3}+3\sqrt{2}\)

d: \(=3-\sqrt{3}+\sqrt{3}-1=2\)

f: \(=\sqrt{10}-\sqrt{10}-2-2\sqrt{10}=-2-2\sqrt{10}\)

Rút gọn biểu thức: 1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\) 2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\) 3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\) 4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\) 5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\) 6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\) 7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\) 8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\) 9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\) 10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\) 11)...
Đọc tiếp

Rút gọn biểu thức:

1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\)

2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)

3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)

4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)

5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)

7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)

8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\)

9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\)

10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\)

11) \(\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}\)

12) \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)

13) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

14) \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)

15) \(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{120}\)

16) \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{24}\)

17) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)

18) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

19) \(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

20) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)

4
3 tháng 1 2019

1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)

2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)

3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2} \)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)

4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)

5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)

7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)

8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2


4 tháng 1 2019
https://i.imgur.com/pmexRQv.jpg
19 tháng 6 2018

a) \(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}=\dfrac{\sqrt{2}\sqrt{3}+\sqrt{2}\sqrt{5}}{\sqrt{7}\sqrt{3}+\sqrt{7}\sqrt{5}}\)

= \(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7}\left(\sqrt{3}+\sqrt{5}\right)}=\dfrac{\sqrt{2}}{\sqrt{7}}=\sqrt{\dfrac{2}{7}}\)

b) \(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}=\dfrac{9\sqrt{5}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}=3\dfrac{3\sqrt{3}+3\sqrt{5}}{3\sqrt{3}+3\sqrt{5}}=3.1=3\)

19 tháng 6 2018

c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)-\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(1-\sqrt{3}\)

P/s: bạn làm thêm bước nữa nha, mình lười, hehe

d) \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}.1+1^2}}{\sqrt{5}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{5-1}\right)^2}}{\sqrt{5}-1}=\dfrac{\left|\sqrt{5}-1\right|}{\sqrt{5}-1}=\dfrac{\sqrt{5}-1}{\sqrt{5}-1}=1\)

20 tháng 7 2018

\(\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\left(\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}{\left(\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{5+3\sqrt{2}-\left(5-3\sqrt{2}\right)}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{3+\sqrt{2}-\left(3-\sqrt{2}\right)}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{6\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)

\(=\frac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\) 

20 tháng 7 2018

\(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)

\(=\frac{10+2\sqrt{7}-6-2\sqrt{7}}{2\sqrt{2}}=\sqrt{2}\)