Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NX : Số hạng đầu tiên có mẫu : 1 . 2
=> Số hạng thứ 100 có mẫu : 100 . ( 100 + 1 ) = 100 . 101
Ta có dãy số :
1/1 . 2 + 1/2 . 3 + 1/3 . 4 + ...+ 1/100 . 1/101
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ...+ 1/100 - 1/101
= 1 - 1/101
= 101/101 - 1/101
= 100/101
Vậy tổng 100 số hạng đầu tiên là 100/101
số hạng thứ 100 của dãy là \(\frac{1}{100\cdot101}\)
tổng của 100 số hạng đầu tiên của dãy :
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{100\cdot101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
Gọi tổng trên là A
\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(\Rightarrow3A=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5+...-\left(n-1\right).n.\left(n+1\right)+n.\left(n+1\right).\left(n+2\right)\)
\(\Rightarrow3A=n.\left(n+1\right).\left(n+2\right)\Rightarrow A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
C=1*2+2*3+3*4+...+98*99
C=2+6+12+...+9702
C=2+9702
C=9704
vay C=9704
D=(1*99+2*99+3*99+...+99*99)-(1*2+2*3+3*4+...+98*99)
D=(99+198+297+...+9801)-(2+6+12+...+9702)
D=(99+9801)-(2+9702)
D=9900-9704
D=196
vay D=196
ai di qua dong tinh thi nho h cho minh nhe
Thừa số thứ nhất của mẫu số của phân số thứ 100 là:
\(\left(100-1\right):1+1=100\)
=> Mẫu số của phân số thứ 100 là 100.101
Tổng 100 số hạng đầu tiên:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) Ta xét mẫu số của các số hạng trong dãy :
6 = 1.6
66 = 6.11
176 = 11.16
336 = 16.21
........
Thừa số thứ nhất của mẫu của phân số thứ 100 của dãy là:
\(\left(100-1\right).5+1=496\)
=> Mẫu của phân số thứ 100 là 496.501.
Tính tổng 100 số hạng đầu:
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
\(=1-\frac{1}{501}=\frac{500}{501}\)
S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ......... + 99.100(101 - 98)
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ........ + 99.100.101 - 98.99.100
=> 3S = (1.2.3 + 2.3.4 + 3.4.5 + ..... + 98.99.100 + 99.100.101) - (1.2.3 + 2.3.4 + .......... + 98.99.100)
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
A=1.2+2.3+3.4+...+2015.2016
=> 3A=1.2.3+2.3.3+3.4.3+...+2015.2016.3
=> 3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2015.2016.(2017-2014)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+ 2015.2016.2017-2014.2015.2016
=> 3A=2015.2016.2017
=> A=\(\frac{2015.2016.2017}{3}=2731179360\)
.
.
nhân 3 vào mỗi hạng tử ta được:
3*(1.2+2.3+3.4+...+99.100)
= 1.2.(3-0)+ 2.3.(4-1)+ 3.4.(5-2)+... + 99.100.(101-98)
=1.2.3 + 2.3.4 -1.2.3 + 3.4.5 -2.3.4 +... + 99.100.101 - 98.99.100
= 99.100.101
Vậy tổng ban đầu 99.100.101/3= 33.100.101
Vậy tổng trên chia hết cho 2;3;4;5;10
A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 = 333300
A=1*2+2*3+3*4+...+99*100
A=100*101*102:3
A=343400(công thức)
3E=1.2.3+2.3.3+3.4.3+...+2020.2021.3=
=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2020.2021.(2022-2019)=
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-2019.2020.2021+2020.2021.2022=
=2020.2021.2022
=> E=2020.2021.2022:3=674.2020.2021
\(E=1.2+2.3+3.4+...+2020.2021\)
\(3E=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+....+2020.2021.\left(2022-2019\right)\)
\(3E=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2020.2021.2022-2019.2020.2021\)
\(3E=2020.2021.2022\)
\(E=2020.2021.674\)