Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+3}{a-3}=\frac{b+4}{b-4}\)
=> \(\frac{a+3}{b+4}=\frac{a-3}{b-4}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a+3}{b+4}=\frac{a-3}{b-4}=\frac{a+3+a-3}{b+4+b-4}=\frac{2a}{2b}=\frac{a}{b}\)
=> \(\frac{a}{b}=\frac{a+3}{b+4}=\frac{a+3-a}{b+4-b}=\frac{3}{4}\)
=> \(\frac{a^3}{b^3}=\frac{3^3}{4^3}=\frac{a^3+3^3}{b^3+4^3}\)
=> \(A=\frac{a^3+3^3}{b^3+4^3}=\frac{3^3}{4^3}\)
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
Ta có :
\(\frac{a}{2}=\frac{b}{3};\frac{a}{4}=\frac{c}{9}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{6}=\frac{c}{9}\)
\(\Rightarrow\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}\)
Áp dụng c/t tỉ lệ thức = nhau ta có :
\(\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}=\frac{a^3+b^3+c^3}{64+216+729}=\frac{-1009}{1009}=-1\)
- \(\frac{a^3}{64}=-1\Rightarrow a^3=-64\Rightarrow a=-4\)
- \(\frac{b^3}{216}=-1\Rightarrow b^3=-216\Rightarrow a=-6\)
- \(\frac{c^3}{729}=-1\Rightarrow c^3=-729\Rightarrow a=-9\)
Vậy a = -4 b = -6 c = -9
a) Ta có: \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{4a}{4c}=\frac{3c}{3d}\)
Theo tín chất dãy tỉ số bằng nhau ta có:
\(\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4c+3d}=\frac{4a-3b}{4c-3d}\)(đpcm)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}=>\frac{a^2}{b^2}=\frac{c^2}{d^2}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=>\frac{a^2+c^2}{b^2+d^2}=\frac{a^2-c^2}{b^2-d^2}\)(đpcm)
Sửa đề \(D=\frac{a^3+3^3}{b^3+4^3}\)biết \(\frac{a+3}{a-3}=\frac{b+4}{b-4}\)
\(\Leftrightarrow\left(a+3\right)\left(b-4\right)=\left(a-3\right)\left(b+4\right)\)
\(\Leftrightarrow ab-4a+3b-12=ab+4a-3b-12\)
\(\Leftrightarrow8a=6b\)
\(\Leftrightarrow\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\)\(\Rightarrow a=3k,b=4k\)
\(\Rightarrow D=\frac{a^3+3^3}{b^3+4^3}=\frac{\left(3k\right)^3+3^3}{\left(4k\right)^3+4^3}\)
\(=\frac{3^3\left(k^3+1\right)}{4^3\left(k^3+1\right)}=\frac{3^3}{4^3}=\frac{27}{64}\)
TL:
8 nhé
HNJK