Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+3}=\frac{9}{256}\)
\(\Leftrightarrow \left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^x.\left(\frac{1}{2}\right)^3=\frac{9}{256}\)
\(\Leftrightarrow \left(\frac{1}{2}\right)^x.(1+\frac{1}{8})=\frac{9}{256}\Rightarrow \left(\frac{1}{2}\right)^x=\frac{1}{32}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow x=5\)
Sửa đề
\(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}}+\dfrac{5}{8}\)
\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}\right)}{\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}}+\dfrac{5}{8}\)
\(=\dfrac{1}{2}\cdot3+\dfrac{5}{8}=\dfrac{3}{2}+\dfrac{5}{8}=\dfrac{17}{8}\)
A= \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}.\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
=> \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13})}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{256})}{\dfrac{4}{4}-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
=> \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13})}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{256})}{4.(\dfrac{1}{4})-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
=> \(\dfrac{1}{2}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{4^3}-\dfrac{1}{16^2})}{4.(\dfrac{1}{4})-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
=> \(\dfrac{1}{2}.\dfrac{3.(-\dfrac{1}{4^2}-\dfrac{1}{16^2})}{4-\dfrac{1}{4^3}}+\dfrac{5}{8}\)
=> \(\dfrac{1}{2}.\dfrac{3.(-\dfrac{1}{16^2})}{4.-\dfrac{1}{4^2}}+\dfrac{5}{8}\)
a: \(\Leftrightarrow\left(\dfrac{12}{25}\right)^x=\dfrac{9}{25}-\dfrac{81}{625}=\dfrac{144}{625}\)
=>x=2
b: =>3x-1=-4
=>3x=-3
hay x=-1
\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\\ \Rightarrow\left(x-\dfrac{2}{15}\right)^3=\left(\dfrac{2}{5}\right)^3\\ \Rightarrow x-\dfrac{2}{15}=\dfrac{2}{5}\\ \Rightarrow x=\dfrac{2}{5}+\dfrac{2}{15}\\ \Rightarrow x=\dfrac{6}{15}+\dfrac{2}{15}\\ \Rightarrow x=\dfrac{8}{15}\\ \left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\\ \Rightarrow\left(\dfrac{4}{5}\right)^{2x+5}=\left(\dfrac{4}{5}\right)^4\\ \Rightarrow2x+5=4\\ \Rightarrow2x=4-5\\ \Rightarrow2x=-1\\ \Rightarrow x=-\dfrac{1}{2}\)
\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\)
\(\left(x-\dfrac{2}{15}\right)^3=\left(\dfrac{2}{5}\right)^3\)
\(x-\dfrac{2}{15}=\dfrac{2}{5}\)
\(x=\dfrac{2}{5}+\dfrac{2}{15}\)
\(x=\dfrac{8}{15}\)
\(\left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\)
\(\left(\dfrac{4}{5}\right)^{2x+5}=\left(\dfrac{4}{5}\right)^4\)
\(2x+5=4\)
\(2x=-1\)
\(x=-0,5\)
a: \(\Leftrightarrow2x-3=x\)
=>x=3
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+\dfrac{5}{4}\cdot2^x=\dfrac{7}{32}\)
=>2^x=1/8
=>x=-3
c: =>2x+7=-4
=>2x=-11
=>x=-11/2
d: =>(4x-3)^2*(4x-4)(4x-2)=0
hay \(x\in\left\{\dfrac{3}{4};1;\dfrac{1}{2}\right\}\)
\(\left(\dfrac{-3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
\(\Rightarrow\left(\dfrac{-3}{4}\right)^{3x-1}=\left(\dfrac{4}{3}\right)^4\)
Xem lại đề
\(\left(-\dfrac{3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
\(\Leftrightarrow\left[\left(-\dfrac{3}{4}\right)^4\right]^{3x-1}=\dfrac{256}{81}\)
\(\Leftrightarrow\left[\left(\dfrac{3}{4}\right)^{-4}\right]^{3x-1}=\dfrac{256}{81}\)
\(\Leftrightarrow3x-1=-4\)
\(\Leftrightarrow x=-1\)
kq đã được kiểm nghiệm bằng máy tính
\(A=256-\dfrac{256}{2}-\dfrac{256}{2^2}-\dfrac{256}{2^3}-.......-\dfrac{256}{2^9}\)
\(\Leftrightarrow A=256\left(1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-.....-\dfrac{1}{2^9}\right)\)
Đặt \(B=\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-.....-\dfrac{1}{2^9}\)
\(\Leftrightarrow2B=1-\dfrac{1}{2}-\dfrac{1}{2^2}-.....-\dfrac{1}{2^8}\)
\(\Leftrightarrow2B-B=1-\dfrac{1}{2^9}\)
\(\Leftrightarrow B=1-\dfrac{1}{2^9}\)
\(\Leftrightarrow A=256\left(1-\dfrac{1}{2^9}\right)\)
\(\Leftrightarrow A=256-\dfrac{1}{2^9}\)
\(\Leftrightarrow A=2^8-\dfrac{1}{2^9}\)
\(\Leftrightarrow A=\dfrac{2^{17}}{2^9}-\dfrac{1}{2^9}\)
\(\Leftrightarrow A=\dfrac{2^{17}-1}{2^9}\)
Vậy \(\Leftrightarrow A=\dfrac{2^{17}-1}{2^9}\)
Chúc bạn học tốt >w<